PNMBG: Point Neighborhood Merging with Border Grids

Summary: The special clustering algorithm is attractive for the task of grouping arbitrary shaped database into several proper classes. Up to now, a wide variety of clustering algorithms designed for this task have been proposed, the majority of these algorithms is density-based. But the effectivity...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01000737101/Details
Matična publikacija: Journal of information and organizational sciences
33 (2009), 2 ; str. 297-305
Glavni autor: Wan, Renxia (-)
Ostali autori: Chen, Jingchao (-), Wang, Lixin, Su, Xiaoke
Vrsta građe: Članak
Jezik: eng
Predmet:
Online pristup: Journal of Information and Organizational Sciences
LEADER 02048caa a2200313 ir4500
001 NSK01000737101
003 HR-ZaNSK
005 20131203120022.0
007 ta
008 100520s2009 ci ||| ||eng
035 |9 (HR-ZaNSK)739727 
035 |a (HR-ZaNSK)000737101 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
080 |a 004  |2 MRF 1998. 
100 1 |a Wan, Renxia 
245 1 0 |a PNMBG: Point Neighborhood Merging with Border Grids /  |c Renxia Wan, Jingchao Chen, Lixin Wang, Xiaoke Su. 
246 3 |a Point Neighborhood Merging with Border Grids 
300 |b Ilustr. 
504 |a Bibliografija: 22 jed. 
520 8 |a Summary: The special clustering algorithm is attractive for the task of grouping arbitrary shaped database into several proper classes. Up to now, a wide variety of clustering algorithms designed for this task have been proposed, the majority of these algorithms is density-based. But the effectivity and efficiency still is the great challenges for these algorithms as far as the clustering quality of such task is concerned. In this paper, we propose an arbitrary shaped clustering method with border grids (PNMBG), PNMBG is a crisp partition method. It groups objects to point neighborhoods firstly, and then iteratively merges these point neighborhoods into clusters via grids, only bordering grids are considered during the merging stage. Experiments show that PNMBG has a good efficiency especially on the database with high dimension. In general, PNMBG outperforms DBSCAN in the term of efficiency and has an almost same effectivity with the later. 
653 0 |a Baza podatka  |a Grupiranje podataka  |a Grid  |a PNMBG  |a Algoritam 
700 1 |a Chen, Jingchao 
700 1 |a Wang, Lixin 
700 1 |a Su, Xiaoke 
773 0 |t Journal of information and organizational sciences  |x 1846-3312  |g 33 (2009), 2 ; str. 297-305  |w nsk.(HR-ZaNSK)000623898 
981 |b B04/09 
998 |a rado100520  |c vol9131203 
856 4 2 |u http://www.jios.foi.hr/index.php/jios  |y Journal of Information and Organizational Sciences