Diophantine equations connected to the Komornik polynomials

We investigate the power and polynomial values of the polynomials Pn(X) = ∏nk=0 (X2 · 3k - X3k - 1 ) for n ∈ ℕ. We prove various ineffective and effective finiteness results. In the case 0≤ n ≤ 3, we determine all pairs x,y of integers such that Pn(x)=y2 or Pn(x)=y3.

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001098349/Details
Matična publikacija: Glasnik matematički (Online)
55 (2020), 1 ; str. 13-27
Glavni autori: Bazsó, András (Author), Berczes, Attila, Kolouch, Ondřej, Pink, István, Šustek, Jan
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.55.1.02
Hrčak
LEADER 01581naa a22003854i 4500
001 NSK01001098349
003 HR-ZaNSK
005 20210607133216.0
006 m d
007 cr||||||||||||
008 210420s2020 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.55.1.02 
035 |a (HR-ZaNSK)001098349 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Bazsó, András  |4 aut 
245 1 0 |a Diophantine equations connected to the Komornik polynomials  |h [Elektronička građa] /  |c András Bazsó, Attila Bérczes, Ondřej Kolouch, István Pink, Jan Šustek. 
300 |b Graf. prikazi. 
504 |a Bibliografske bilješke na kraju teksta. 
504 |a Summary. 
520 |a We investigate the power and polynomial values of the polynomials Pn(X) = ∏nk=0 (X2 · 3k - X3k - 1 ) for n ∈ ℕ. We prove various ineffective and effective finiteness results. In the case 0≤ n ≤ 3, we determine all pairs x,y of integers such that Pn(x)=y2 or Pn(x)=y3. 
653 0 |a Diofantske jednadžbe  |a Dekompozicija  |a Polinomi 
700 1 |a Berczes, Attila  |4 aut 
700 1 |a Kolouch, Ondřej  |4 aut  |9 HR-ZaNSK 
700 1 |a Pink, István  |4 aut 
700 1 |a Šustek, Jan  |4 aut  |9 HR-ZaNSK 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 55 (2020), 1 ; str. 13-27  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2020  |b B03/20 
998 |b tino2106 
856 4 0 |u https://doi.org/10.3336/gm.55.1.02 
856 4 0 |u https://hrcak.srce.hr/239039  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr