Qualitative spatial reasoning with topological information

Permalink: http://skupni.nsk.hr/Record/fer.KOHA-OAI-FER:34769/Details
Glavni autor: Renz, Jochen (-)
Vrsta građe: Knjiga
Jezik: eng
Impresum: Berlin ; New York : Springer, c2002.
Nakladnička cjelina: Lecture notes in computer science ; 2293.
Lecture notes in computer science. Lecture notes in artificial intelligence.
Predmet:
Online pristup: Publisher description
LEADER 04409cam a22003254a 4500
005 20140604145432.0
008 020215s2002 gw a b 001 0 eng
010 |a  2002023332 
020 |a 3540433465 (pbk. : alk. paper) 
035 |a (DLC) 2002023332 
040 |a DLC  |c DLC  |d HR-ZaFER  |b hrv  |e ppiak 
042 |a pcc 
050 0 0 |a Q387  |b .R5 2002 
082 0 0 |a 003/.54  |2 21 
100 1 |a Renz, Jochen. 
245 1 0 |a Qualitative spatial reasoning with topological information /  |c Jochen Renz. 
260 |a Berlin ;  |a New York :  |b Springer,  |c c2002. 
300 |a xvi, 207 p. :  |b ill. ;  |c 24 cm. 
490 1 |a Lecture notes in computer science ;  |v 2293.  |a Lecture notes in artificial intelligence 
504 |a Includes bibliographical references (p. 191-200) and index. 
505 0 0 |t Introduction Different Approaches for Representing Spatial Knowledge Qualitative Spatial Representation and Reasoning Applications and Research Goals of Qualitative Spatial Representation and Reasoning Topological Relations as a Basis for Qualitative Spatial Representation and Reasoning Overview of This Book.  |t Background Toplogy Propositional and First-Order Logic Propositional Modal Logics First-Order Logic Computational Complexity Tractability and NP-Completeness Phase Transitions Constraint Satisfaction Binary Constraint Satisfaction Problems and Relation Algebras Relation Algebras Based on JEPD Relations Temporal Reasoning with Allen's Interval Algebra.  |t Qualitative Spatial Representation and Reasoning History of Qualitative Spatial Reasoning Principles of Qualitative Spatial Reasoning Different Approaches to Qualitative Spatial Reasoning Topology Orientation Distance.  |t The Region Connection Calculus A Spatial Logic Based on Regions and Connection The Region Calculus RCC-8 Encoding of RCC-8 in Modal Logic Egenhofer's Approach to Topological Spatial Relations.  |t Cognitive Properties of Topological Spatial Relations Psychological Background Empirical Investigation I: Grouping Task with Circural Regions Subjects, Method, and Procedure Results of the Second Investigation Discussion Discussion and Outlook.  |t Computational Properties of RCC-8 Computational Complexity of RCC-8 Transformation of RSAT to SAT Analysis of the Modal Encoding Determining a Particular Kripke Model Transformation to a Classical Propositional Formula Tractable Subsets of RCC-8 Identifying a Large Tractable Subset of RCC-8 Maximality of H8 with Respect of Tractability Applicability of Path-Consistency Applying Positive Unit Resolution to Path-Consistency Path-Consistency for the Full Set of Tractable Relations Finding a Consistent Scenario Discussion.  |t A Complete Analysis of Tractability in RCC-8 A General Method for Proving Tractability of Sets of Relations Candidates for Maximal Tractable Subsets of RCC-8 A Complete Analysis of Tractability Finding a Consistent Scenario II: An Improved Algorithm for All Tractable Subsets Applying the New Method to Allen's Interval Algebra Discussion.  |t Empirical Evaluation of Reasoning with RCC-8 Test Instances, Heuristics, and Measurements Empirical Evaluation of the Heuristics Orthogonal Combination of the Heuristics Combining Heuristics for Solving Large Instances Discussion.  |t Representational Properties of RCC-8 A Canonical Model of RCC-8 A Toplogical Interpretations of the Canonical Model RCC-8 Models and the Dimension of Space Applicability of the Canonical Model Determination of RCC-8 Models Generating a Realization Discussion.   |t Conclusions Summary of Contributions Discussion & Future Research.  |t Enumeration of the Relations of the Maximal Tractable Subsets of RCC-8 Relations of H8 and Their Abbreviated Form Functional Construction of the Relations of H8 / H8 Using Relations of H8 The Maximal Tractable subsets of RCC-8.  |t References.  |t Index. 
650 0 |a Knowledge representation (Information theory) 
650 0 |a Space perception. 
830 0 |a Lecture notes in computer science ;  |v 2293. 
830 0 |a Lecture notes in computer science.  |p Lecture notes in artificial intelligence. 
856 4 2 |3 Publisher description  |u http://www.loc.gov/catdir/enhancements/fy0817/2002023332-d.html 
906 |a 7  |b cbc  |c orignew  |d 1  |e ocip  |f 20  |g y-gencatlg 
942 |2 udc  |c K 
955 |a pv03 2002-02-15 to ASCD  |c jp02 2002-02-22 to subj.  |a aa07 2002-02-27  |a copy rec'd and forwarded lg02 2002-07-17 to CIP  |a ps10 2002-08-02 bk rec'd, to CIP ver. 
999 |c 34769  |d 34769