Elliptic partial differential equations and quasiconformal mappings in the plane
Permalink: | http://skupni.nsk.hr/Record/fer.KOHA-OAI-FER:35594/TOC |
---|---|
Glavni autor: | Astala, Kari, 1953- (-) |
Ostali autori: | Iwaniec, Tadeusz (-), Martin, Gaven |
Vrsta građe: | Knjiga |
Jezik: | eng |
Impresum: |
Princeton :
Princeton University Press,
c2009.
|
Nakladnička cjelina: |
Princeton mathematical series ;
48. |
Predmet: | |
Online pristup: |
Table of contents only Table of contents |
Sadržaj:
- Background in conformal geometry
- Foundations of quasiconformal mappings
- Complex potentials
- Measurable Riemann mapping theorem: the existence theory of quasiconformal mappings
- Parameterizing general linear elliptic systems
- Concept of ellipticity
- Solving general nonlinear first-order elliptic systems
- Nonlinear Riemann mapping theorems
- Conformal deformations and beltrami systems
- Quasilinear cauchy problem
- Holomorphic motions
- Higher Integrability
- L[superscript P]-theory of beltrami operators
- Schauder estimates for beltrami operators
- Applications to partial differential equations
- PDEs not of divergence type: pucci's conjecture
- Quasiconformal methods in impedance tomography: Calderón's problem
- Integral estimates for the Jacobian
- Solving the Beltrami equation: degenerate elliptic case
- Aspects of the calculus of variations
- Appendix. Elements of sobolev theory and function spaces
- A.1. Schwartz distributions
- A.2. Definitions of Sobolev spaces
- A.3. Mollification
- A.4. Pointwise coincidence of Sobolev functions
- A.5. Alternate characterizations
- A.6. Embedding theorems
- A.7. Duals and compact embeddings
- A.8. Hardy spaces and BMO
- A.9. Reverse holder inequalities
- A.10. Variations of Sobolev mappings.