|
|
|
|
LEADER |
01962cam a22003254a 4500 |
005 |
20140107143158.0 |
008 |
101005s2011 maua b 001 0 eng |
010 |
|
|
|a 2010039827
|
020 |
|
|
|a 9780123748560 (pbk.)
|
020 |
|
|
|a 0123748569 (pbk.)
|
040 |
|
|
|a DLC
|c DLC
|d YDX
|d BTCTA
|d YDXCP
|d BWX
|d DEBSZ
|d CDX
|d IUL
|d HR-ZaFER
|b hrv
|e ppiak
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA76.9.D343
|b W58 2011
|
082 |
0 |
0 |
|a 006.3/12
|2 22
|
100 |
1 |
|
|a Witten, I. H.
|q (Ian H.)
|
245 |
1 |
0 |
|a Data mining :
|b practical machine learning tools and techniques /
|c Ian H. Witten, Eibe Frank, Mark A. Hall.
|
250 |
|
|
|a 3rd ed.
|
260 |
|
|
|a Burlington, MA :
|b Morgan Kaufmann,
|c c2011.
|
300 |
|
|
|a xxxiii, 629 str. :
|b ilustr. ;
|c 24 cm.
|
490 |
1 |
|
|a [Morgan Kaufmann series in data management systems]
|
504 |
|
|
|a Includes bibliographical references (p. 587-605) and index.
|
505 |
0 |
|
|a Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
|
650 |
|
0 |
|a Data mining.
|
700 |
1 |
|
|a Frank, Eibe.
|
700 |
1 |
|
|a Hall, Mark A.
|
830 |
|
0 |
|a Morgan Kaufmann series in data management systems.
|
906 |
|
|
|a 7
|b cbc
|c orignew
|d 1
|e ecip
|f 20
|g y-gencatlg
|
942 |
|
|
|2 udc
|c K
|
955 |
|
|
|b xh00 2010-10-05
|a xh07 2010-10-05 ONIX awaiting for author/edition info.
|i xh07 2010-10-08 to Dewey
|a xe14 2011-04-20 2 copies rec'd., to CIP ver.
|
999 |
|
|
|c 42944
|d 42944
|