|
|
|
|
LEADER |
01941cam a22003617a 4500 |
005 |
20150130094332.0 |
008 |
130131s2012 enka b 001 0 eng d |
010 |
|
|
|a 2012289353
|
015 |
|
|
|a GBB254843
|2 bnb
|
016 |
7 |
|
|a 016098961
|2 Uk
|
020 |
|
|
|a 9781107096394 (hbk.)
|
020 |
|
|
|a 1107096391 (hbk.)
|
020 |
|
|
|a 9781107422223 (pbk.)
|
020 |
|
|
|a 1107422221 (pbk.)
|
035 |
|
|
|a (OCoLC)ocn795181906
|
040 |
|
|
|a UKMGB
|b eng
|c UKMGB
|d BTCTA
|d OCLCO
|d BDX
|d YDXCP
|d CDX
|d ZWZ
|d EYM
|d TEF
|d JHE
|d MUU
|d HR-ZaFER
|e ppiak
|
041 |
|
|
|b eng
|
042 |
|
|
|a lccopycat
|
050 |
0 |
0 |
|a Q325.5
|b .F53 2012
|
082 |
0 |
4 |
|a 006.31
|2 23
|
100 |
1 |
|
|a Flach, Peter A.
|
245 |
1 |
0 |
|a Machine learning :
|b the art and science of algorithms that make sense of data /
|c Peter Flach.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a xvii, 396 str. :
|b ilustr. u bojama ;
|c 25 cm.
|
504 |
|
|
|a Includes bibliographical references (p. 367-381) and index.
|
505 |
0 |
|
|a 1. The ingredients of machine learning -- 2. Binary classification and related tasks -- 3. Beyond binary classification -- 4. Concept learning -- 5. Tree models -- 6. Rule models -- 7. Linear models -- 8. Distance-based models -- 9. Probabilistic models -- 10. Features -- 11. Model ensembles -- 12. Machine learning experiments -- Epilogue: where to go from here.
|
520 |
3 |
|
|a 'Machine Learning' brings together all the state-of-the-art methods for making sense of data. With hundreds of worked examples and explanatory figures, it explains the principles behind these methods in an intuitive yet precise manner and will appeal to novice and experienced readers alike.
|
650 |
|
0 |
|a Machine learning
|v Textbooks.
|
650 |
|
7 |
|a Apprentissage automatique
|x Manuels scolaires.
|2 ram
|
906 |
|
|
|a 7
|b cbc
|c copycat
|d 2
|e ncip
|f 20
|g y-gencatlg
|
942 |
|
|
|2 udc
|c K
|
955 |
|
|
|b xe10 2013-01-31 z-processor 2 copies to USPL
|i xh14 2013-02-06 to BCCD
|
999 |
|
|
|c 43711
|d 43711
|