Advanced analytics with Spark

"In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You&#...

Full description

Permalink: http://skupni.nsk.hr/Record/fer.KOHA-OAI-FER:45711/Details
Vrsta građe: Knjiga
Jezik: eng
Impresum: 2015.
Izdanje: 1. ed
Predmet:
LEADER 03059cam a22003497i 4500
005 20160329145210.0
008 151020s2015 cc a 001 0 eng d
020 |a 9781491912768 
020 |a 1491912766 
040 |a BTCTA  |b eng  |c BTCTA  |e rda  |d YDXCP  |d BDX  |d TXI  |d MAC  |d EYM  |d HR-ZaFER 
042 |a lccopycat 
050 0 0 |a QA76.9.D343  |b R93 2015 
082 0 4 |a 006.3/12  |2 23 
100 1 |a Ryza, Sandy,  |e author.  |9 35292 
245 1 0 |a Advanced analytics with Spark /  |c Sandy Ryza, Uri Laserson, Sean Owen and Josh Wills. 
246 1 |i Subtitle on cover:  |a Patterns for learning from data at scale 
250 |a 1. ed. 
260 |c 2015. 
300 |a xii, 260 str. :  |b ilustr. ;  |c 23 cm. 
500 |a Includes index. 
505 0 |a Analyzing big data -- Introduction to data analysis with Scala and Spark -- Recommending music and the audioscrobbler data set -- Predicting forest cover with decision trees -- Anomaly detection in network traffic with K-means clustering -- Understanding Wikipedia with latent semantic analysis -- Analyzing co-occurrence networks with GraphX -- Geospatial and temporal data analysis on the New York City taxi trip data -- Estimating financial risk through Monte Carlo simulation -- Analyzing genomics data and the BDG project -- Analyzing neuroimaging data with PySpark and Thunder. 
520 |a "In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-classification, collaborative filtering, and anomaly detection among others-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find these patterns useful for working on your own data applications. Patterns include: Recommending music and the Audioscrobbler data set, Predicting forest cover with decision trees, Anomaly detection in network traffic with K-means clustering, Understanding Wikipedia with Latent Semantic Analysis, Analyzing co-occurrence networks with GraphX, Geospatial and temporal data analysis on the New York City Taxi Trips data, Estimating financial risk through Monte Carlo simulation, Analyzing genomics data and the BDG project and Analyzing neuroimaging data with PySpark and Thunder." from publisher's website. 
630 0 0 |a Spark (Electronic resource : Apache Software Foundation)  |9 35286 
650 0 |a Big data.  |9 35287 
650 0 |a Data mining  |x Computer programs.  |9 35288 
700 1 |a Laserson, Uri,  |e author.  |9 35293 
700 1 |a Owen, Sean,  |e author.  |9 35294 
700 1 |a Wills, Josh,  |e author.  |9 35295 
906 |a 7  |b cbc  |c copycat  |d 2  |e ncip  |f 20  |g y-gencatlg 
942 |2 udc  |c K 
955 |b rk07 2015-10-20 z-processor  |i rk07 2015-10-22 to CALM 
999 |c 45711  |d 45711