Determining Adequate Sample Sizes for Multiple Linear Regression used for Explanatory purposes

There are numerous methods for determining minimum sample sizes when using multiple linear regression, from various rules of thumb to elaborate power analysis. Different methods, however, often yield surprisingly discrepant estimations. Monte Carlo simulation was used to examine models with varying...

Full description

Permalink: http://skupni.nsk.hr/Record/ffzg.KOHA-OAI-FFZG:316001/Details
Matična publikacija: 19. Dani Ramira i Zorana Bujasa: program i sažeci priopćenja
Zagreb : Odsjek za psihologiju, Filozofski fakultet u Zagrebu, 2009
Glavni autor: Rebernjak, Blaž (-)
Vrsta građe: Članak
Jezik: eng
Online pristup: Elektronička verzija sažetka
LEADER 02695naa a2200241uu 4500
005 20150618132556.0
008 131111s2009 xx 1 eng|d
035 |a (CROSBI)399325 
040 |a HR-ZaFF  |b hrv  |c HR-ZaFF  |e ppiak 
100 1 |9 768  |a Rebernjak, Blaž 
245 1 0 |a Determining Adequate Sample Sizes for Multiple Linear Regression used for Explanatory purposes /  |c Rebernjak, Blaž. 
246 3 |i Naslov na engleskom:  |a Determining Adequate Sample Sizes for Multiple Linear Regression used for Explanatory purposes 
300 |a 69-69  |f str. 
520 |a There are numerous methods for determining minimum sample sizes when using multiple linear regression, from various rules of thumb to elaborate power analysis. Different methods, however, often yield surprisingly discrepant estimations. Monte Carlo simulation was used to examine models with varying number of predictor variables (2, 3, 4, 5, 7, 9, 11, 15), average intercorrelation between predictor variables (0, 0.1, 0.3, 0.5) and standardized regression coefficient of the specific predictor variable of interest (0.1, 0.3, 0.5), resulting in 96 different situations. Samples of varying sizes (from 25 to 5000) were drawn from multivariate normal distributions with 96 specified population correlation matrices. For each situation 5000 replications were made, resulting in a total of 7680000 analyses preformed. Based on the results for each situation, interpolation was used to approximate the sample size needed for the power to reach 0.80. Results show that all of the hypothesized variables influence minimum sample size with size of the regression coefficient being the strongest determinant. Limits of the present approach are discussed, and comparisons with proposed methods for determining adequate sample size are made for three hypothetical situations. 
536 |a Projekt MZOS  |f 130-1301683-1402 
546 |a ENG 
690 |a 5.06 
693 |a Statistical power, regression analysis, Monte Carlo simulation, sample size  |l hrv  |2 crosbi 
693 |a Statistical power, regression analysis, Monte Carlo simulation, sample size  |l eng  |2 crosbi 
773 0 |a 19. Dani Ramira i Zorana Bujasa (22-25.04.2009. ; Zagreb, Hrvatska)  |t 19. Dani Ramira i Zorana Bujasa: program i sažeci priopćenja  |d Zagreb : Odsjek za psihologiju, Filozofski fakultet u Zagrebu, 2009  |n Ljubotina, Damir ; Kamenov, Željka ; Mikac, Una ; Urch, Dražen  |z 978-953-175-339-5  |g str. 69-69  |w ffzg.(HR-ZaFF)231301 
856 |u http://psihologija.ffzg.unizg.hr/uploads/GV/jq/GVjq5ZWSc1qY_jFQFQ483g/19_Dani-Bujasa_2009_Web_Version.pdf  |y Elektronička verzija sažetka 
942 |c RZB  |u 2  |v DomRecenzija  |z Znanstveni - Predavanje - Sazetak  |t 1.12 
999 |c 316001  |d 315999