BLEU Evaluation of Machine-Translated English-Croatian Legislation

This paper presents work on the evaluation of online available machine translation (MT) service, i.e. Google Translate, for English-Croatian language pair in the domain of legislation. The total set of 200 sentences, for which three reference translations are provided, is divided into short and long...

Full description

Permalink: http://skupni.nsk.hr/Record/ffzg.KOHA-OAI-FFZG:317874/Details
Matična publikacija: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)
Istanbul, Turkey : European Language Resources Association (ELRA), 2012
Glavni autori: Seljan, Sanja (-), Vičić, Tomislav (Author), Brkić, Marija
Vrsta građe: Članak
Jezik: eng
Online pristup: http://www.lrec-conf.org/proceedings/lrec2012/index.html
LEADER 02650naa a2200253uu 4500
008 131111s2012 xx 1 eng|d
035 |a (CROSBI)582714 
040 |a HR-ZaFF  |b hrv  |c HR-ZaFF  |e ppiak 
100 1 |9 430  |a Seljan, Sanja 
245 1 0 |a BLEU Evaluation of Machine-Translated English-Croatian Legislation /  |c Seljan, Sanja ; Vičić, Tomislav ; Brkić, Marija. 
246 3 |i Naslov na engleskom:  |a BLEU Evaluation of Machine-Translated English-Croatian Legislation 
300 |f str. 
520 |a This paper presents work on the evaluation of online available machine translation (MT) service, i.e. Google Translate, for English-Croatian language pair in the domain of legislation. The total set of 200 sentences, for which three reference translations are provided, is divided into short and long sentences. Human evaluation is performed by native speakers, using the criteria of adequacy and fluency. For measuring the reliability of agreement among raters, Fleiss' kappa metric is used. Human evaluation is enriched by error analysis, in order to examine the influence of error types on fluency and adequacy, and to use it in further research. Translation errors are divided into several categories: non-translated words, word omissions, unnecessarily translated words, morphological errors, lexical errors, syntactic errors and incorrect punctuation. The automatic evaluation metric BLEU is calculated with regard to a single and multiple reference translations. System level Pearson’s correlation between BLEU scores based on a single and multiple reference translations is given, as well as correlation between short and long sentences BLEU scores, and correlation between the criteria of fluency and adequacy and each error category. 
536 |a Projekt MZOS  |f 130-1300646-0909 
546 |a ENG 
690 |a 5.04 
693 |a BLEU metric, English-Croatian legislation, human evaluation  |l hrv  |2 crosbi 
693 |a BLEU metric, English-Croatian legislation, human evaluation  |l eng  |2 crosbi 
700 1 |a Vičić, Tomislav  |4 aut 
700 1 |a Brkić, Marija  |4 aut 
773 0 |a Language Resources and Evaluation (LREC'12) (23-25.5.2012. ; LREC 2012)  |t Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)  |d Istanbul, Turkey : European Language Resources Association (ELRA), 2012  |n Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis  |z 978-2-9517408-7-7 
856 |u http://www.lrec-conf.org/proceedings/lrec2012/index.html 
942 |c RZB  |u 2  |v Recenzija  |z Znanstveni - Poster - CijeliRad  |t 1.08 
999 |c 317874  |d 317872