Longitudinal data analysis using structural equation models

Permalink: http://skupni.nsk.hr/Record/ffzg.KOHA-OAI-FFZG:330358/Details
Glavni autor: McArdle, John J. (-)
Ostali autori: Nesselroade, John R. (-)
Vrsta građe: Knjiga
Jezik: eng
Impresum: Washington : American Psychological Association, 2014
Predmet:
LEADER 03240cam a22002297i 4500
005 20141104123550.0
008 131213s2014 dcu b 001 0 eng
010 |a  2013046896 
020 |a 9781433817151 
040 |a DLC  |b eng  |c DLC  |e ppiak  |d HR-ZaFF 
100 1 |a McArdle, John J. 
245 1 0 |a Longitudinal data analysis using structural equation models /  |c John J. McArdle and John R. Nesselroade. 
260 |a Washington :   |b American Psychological Association,   |c 2014 
300 |a xi, 426 str. ;   |b graf. prikazi ;  |c 26 cm 
504 |a Bibliografija: str. 373-400 
504 |a Kazalo 
505 0 |a Preface -- Overview -- Foundations -- Background and goals of longitudinal research -- Basics of structural equation modeling -- Some technical details on structural equation modeling -- Using the simplified ram notation -- Benefits and problems of longitudinal structure modeling -- The first purpose of LSEM : direct identification of intra-individual changes -- Alternative definitions of individual changes -- Analyses based on latent curve models (LCM) -- Analyses based on time series regression (TSR) -- Analyses based on latent change score (LCS) models -- Analyses based on advanced latent change score models -- The second purpose of LSEM : identification of inter-individual differences in intra-individual changes -- Studying inter-individual differences in intra-individual changes -- Repeated measures analysis of variance as a structural model -- Multi-level structural equation modeling approaches to group differences -- Multi-group structural equation modeling approaches to group differences -- Incomplete data with multiple group modeling of changes -- The third purpose of LSEM : identification of inter-relationships in growth -- Considering common factors/latent variables in models -- Considering factorial invariance in longitudinal SEM -- Alternative common factors with multiple longitudinal observations -- More alternative factorial solutions for longitudinal data -- Extensions to longitudinal categorical factors -- The fourth purpose of LSEM : identification of causes (determinants) of intra-individual changes -- Analyses based on cross-lagged regression and changes -- Analyses based on cross-lagged regression in changes of factors -- Current models for multiple longitudinal outcome scores -- The bivariate latent change score model for multiple occasions -- Plotting bivariate latent change score results -- The fifth purpose of lsem : identification of inter-individual differences in causes (determinants) of intra-individual changes -- Dynamic processes over groups -- Dynamic influences over groups -- Applying a bivariate change model with multiple groups -- Notes on the inclusion of randomization in longitudinal studies -- The popular repeated measures analysis of variance -- Summary and discussion -- Contemporary data analyses based on planned incompleteness -- Factor invariance in longitudinal research -- Variance components for longitudinal factor models -- Models for intensively repeated measures -- CODA : the future is yours! -- References. 
650 0 |a Longitudinal method. 
650 0 |a Psychology  |x Research. 
700 1 |a Nesselroade, John R. 
942 |c KNJ 
999 |c 330358  |d 330355