Application of neural networks in petroleum reservoir lithology and saturation prediction

Summary: The Kloštar oil field is situated in the northern part of the Sava Depression within the Croatian part of the Pannonian Basin. The major petroleum reserves are confi ned to Miocene sandstones that comprise two production units: the Lower Pontian I sandstone series and the Upper Pannonian II...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01000739878/Details
Matična publikacija: Geologia Croatica
62 (2009), 2 ; str. 115-121
Glavni autor: Cvetković, Marko (-)
Ostali autori: Velić, Josipa (-), Malvić, Tomislav
Vrsta građe: Članak
Jezik: eng
Predmet:
Online pristup: Geologia Croatica
LEADER 02161caa a2200301 i 4500
001 NSK01000739878
003 HR-ZaNSK
005 20121112102347.0
007 ta
008 100527s2009 ci ||| ||eng
035 |a (HR-ZaNSK)000739878 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 |a 55  |2 MRF 1998. 
100 1 |a Cvetković, Marko 
245 1 0 |a Application of neural networks in petroleum reservoir lithology and saturation prediction /  |c Marko Cvetković, Josipa Velić, Tomislav Malvić. 
300 |b Ilustr. 
504 |a Bibliografija: 22 jed 
520 8 |a Summary: The Kloštar oil field is situated in the northern part of the Sava Depression within the Croatian part of the Pannonian Basin. The major petroleum reserves are confi ned to Miocene sandstones that comprise two production units: the Lower Pontian I sandstone series and the Upper Pannonian II sandstone series. We used well logs from two wells through these sandstones as input data in the neural network analysis, and used spontaneous potential and resistivity logs (R16 and R64) as the input in network training. The fi rst analysis included prediction of lithology, which was defined as either sandstone or marl. These two rock types were assigned categorical values of 1 or 0 which were then used in numerical analysis. The neural network was also used to predict hydrocarbon saturation in selected wells. The input dataset was extended to depth and categorical lithology. The prediction results were excellent, because the training and prediction dataset showed little disagreement between the true and predicted values. At present, this study represents the best and most useful application of neural networks in the Croatian part of the Pannonian Basin 
653 0 |a Neuralna mreža  |a Zasićenje ugljikovodicima  |a Pješčenjak 
653 5 |a Kloštar (polje) 
700 1 |a Velić, Josipa 
700 1 |a Malvić, Tomislav 
773 0 |t Geologia Croatica  |x 1330-030X  |g 62 (2009), 2 ; str. 115-121 
981 |b B06/09  |p CRO 
998 |a dalo100708  |c vol2o121112 
856 4 2 |u http://hrcak.srce.hr/geologia-croatica  |y Geologia Croatica