Multilayer perceptron approach to condition-based maintenance of marine CODLAG propulsion system components

In this paper multilayer perceptron (MLP) approach to condition-based maintenance of combined diesel-electric and gas (CODLAG) marine propulsion system is presented. By using data available in UCI, online machine learning repository, MLPs for prediction of gas turbine (GT) and GT compressor decay st...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001055828/Details
Matična publikacija: Pomorstvo (Online)
33 (2019), 2 ; str. 181-190
Glavni autori: Lorencin, Ivan (Author), Anđelić, Nikola, inženjer strojarstva, Mrzljak, Vedran, Car, Zlatan, inženjer strojarstva
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31217/p.33.2.8
Hrčak
LEADER 02463naa a22003734i 4500
001 NSK01001055828
003 HR-ZaNSK
005 20200709144826.0
006 m d
007 cr||||||||||||
008 200217s2019 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.31217/p.33.2.8 
035 |a (HR-ZaNSK)001055828 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 621  |2 2011 
100 1 |a Lorencin, Ivan  |4 aut 
245 1 0 |a Multilayer perceptron approach to condition-based maintenance of marine CODLAG propulsion system components  |h [Elektronička građa] /  |c Ivan Lorencin, Nikola Anđelić, Vedran Mrzljak, Zlatan Car. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 44 jed. 
504 |a Summary. 
520 |a In this paper multilayer perceptron (MLP) approach to condition-based maintenance of combined diesel-electric and gas (CODLAG) marine propulsion system is presented. By using data available in UCI, online machine learning repository, MLPs for prediction of gas turbine (GT) and GT compressor decay state coefficients are designed. Aforementioned MLPs are trained and tested by using 11 934 samples, of which 9 548 samples are used for training and 2 386 samples are used testing. In the case of GT decay state coefficient prediction, the lowest mean relative error of 0.622 % is achieved if MLP with one hidden layer of 50 artificial neurons (AN) designed with Tanh activation function is utilized. This configuration achieves the best results if it is trained by using L-BFGS solver. In the case of GT compressor decay state coefficient, the best results are achieved if MLP is designed with four hidden layers of 100, 50, 50 and 20 ANs, respectively. This configuration is designed by using Logistic sigmoid activation function. The lowest mean relative error of 1.094 % is achieved if MLP is trained by using L-BFGS solver. 
653 0 |a Brodsko strojarstvo  |a Pogonski sustavi  |a Umjetna inteligencija  |a Višeslojni perceptron 
700 1 |a Anđelić, Nikola,  |c inženjer strojarstva  |4 aut 
700 1 |a Mrzljak, Vedran  |4 aut 
700 1 |a Car, Zlatan,  |c inženjer strojarstva  |4 aut 
773 0 |t Pomorstvo (Online)  |x 1846-8438  |g 33 (2019), 2 ; str. 181-190  |w nsk.(HR-ZaNSK)000663208 
981 |b Be2019  |b B01/19 
998 |b dalo2003 
856 4 0 |u https://doi.org/10.31217/p.33.2.8 
856 4 0 |u https://hrcak.srce.hr/229308  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr