Analysis of methods and techniques for prediction of natural gas consumption

Due to its many advantages, demand for natural gas has increased considerably and many models for predicting natural gas consumption are developed. The aim of this paper is to present an overview and systematic analysis of the latest research papers that deal with predictions of natural gas consumpt...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001059517/Details
Matična publikacija: Journal of information and organizational sciences (Online)
43 (2019), 1 ; str. 99-117
Glavni autori: Šebalj, Dario (Author), Mesarić, Josip, Dujak, Davor
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31341/jios.43.1.6
Journal of information and organizational sciences (Online)
Hrčak
LEADER 02474naa a22003854i 4500
001 NSK01001059517
003 HR-ZaNSK
005 20200406194230.0
006 m d
007 cr||||||||||||
008 200325s2019 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.31341/jios.43.1.6 
035 |a (HR-ZaNSK)001059517 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
080 1 |a 55  |2 2011 
100 1 |a Šebalj, Dario  |4 aut 
245 1 0 |a Analysis of methods and techniques for prediction of natural gas consumption  |h [Elektronička građa] :  |b a literature review /  |c Dario Šebalj, Josip Mesarić, Davor Dujak. 
300 |b Ilustr. 
504 |a Bibliografija: 47 jed. 
504 |a Abstract. 
520 |a Due to its many advantages, demand for natural gas has increased considerably and many models for predicting natural gas consumption are developed. The aim of this paper is to present an overview and systematic analysis of the latest research papers that deal with predictions of natural gas consumption for residential and commercial use from the year 2002 to 2017. Literature overview analysis was conducted using the two most relevant scientific databases Web of Science Core Collection and Scopus. The results indicate neural networks as the most common method used for predictions of natural gas consumption, while most accurate methods are genetic algorithms, support vector machines and ANFIS. Most used input variables are past natural gas consumption data and weather data, and prediction is most commonly made on daily and annual level on a country area level. Limitations of the research raise from relatively small number of analyzed papers but still research could be used for significant improving of prediction models for natural gas consumption. 
653 0 |a Prirodni plin  |a Potrošnja  |a Modeli predviđanja  |a Energija  |a Pregled literature 
700 1 |a Mesarić, Josip  |4 aut 
700 1 |a Dujak, Davor  |4 aut 
773 0 |t Journal of information and organizational sciences (Online)  |x 1846-9418  |g 43 (2019), 1 ; str. 99-117  |w nsk.(HR-ZaNSK)000672813 
981 |b Be2019  |b B02/19 
998 |b tino2004 
856 4 0 |u https://doi.org/10.31341/jios.43.1.6 
856 4 0 |u https://jios.foi.hr/index.php/jios/article/view/1211  |y Journal of information and organizational sciences (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/221388  |y Hrčak