Finite difference solution of plate bending using Wolfram Mathematica

This article describes the procedure of calculating deflection of rectangular plate using a finite difference method, programmed in Wolfram Mathematica. Homogenous rectangular plate under uniform pressure is simulated for this paper. In the introduction, basic assumptions are given and the problem i...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001061220/Details
Matična publikacija: Tehnički glasnik (Online)
13 (2019), 3 ; str. 241-247
Glavni autori: Pisačić, Katarina (Author), Horvat, Marko, inženjer strojarstva, Botak, Zlatko
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31803/tg-20190328111708
Hrčak
LEADER 02126naa a22003734i 4500
001 NSK01001061220
003 HR-ZaNSK
005 20200526151325.0
006 m d
007 cr||||||||||||
008 200422s2019 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.31803/tg-20190328111708 
035 |a (HR-ZaNSK)001061220 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 621  |2 2011 
080 1 |a 004  |2 2011 
100 1 |a Pisačić, Katarina  |4 aut 
245 1 0 |a Finite difference solution of plate bending using Wolfram Mathematica  |h [Elektronička građa] /  |c Katarina Pisačić, Marko Horvat, Zlatko Botak. 
300 |b Ilustr. 
504 |a Bibliografija: 9 jed. 
504 |a Abstract. 
520 |a This article describes the procedure of calculating deflection of rectangular plate using a finite difference method, programmed in Wolfram Mathematica. Homogenous rectangular plate under uniform pressure is simulated for this paper. In the introduction, basic assumptions are given and the problem is defined. Chapters that follow describe basic definitions for plate bending, deflection, slope and curvature. The following boundary condition is used in this article: rectangular plate is wedged on one side and simply supported on three sides. Using finite difference method, linear equation system is given and solved in Wolfram Mathematica. System of equations is built using the mapping function and solved with solve function. Solutions are given in the graphs. Such obtained solutions are compared to the finite element method solver NastranInCad. 
653 0 |a Metoda konačnih razlika  |a Savijanje ploča  |a Tehničke znanosti  |a Računalni programi 
700 1 |a Horvat, Marko,  |c inženjer strojarstva  |4 aut 
700 1 |a Botak, Zlatko  |4 aut 
773 0 |t Tehnički glasnik (Online)  |x 1848-5588  |g 13 (2019), 3 ; str. 241-247  |w nsk.(HR-ZaNSK)000810940 
981 |b Be2019  |b B03/19 
998 |b tino2005 
856 4 0 |u https://doi.org/10.31803/tg-20190328111708 
856 4 0 |u https://hrcak.srce.hr/225479  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr