Confidence interval for quantiles and percentiles

Quantiles and percentiles represent useful statistical tools for describing the distribution of results and deriving reference intervals and performance specification in laboratory medicine. They are commonly intended as the sample estimate of a population parameter and therefore they need to be pre...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001068990/Details
Matična publikacija: Biochemia medica (Online)
29 (2019), 1 ; str. 5-17
Glavni autor: Ialongo, Cristiano (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.11613/BM.2019.010101
Biochemia medica (Online)
Hrčak
LEADER 02247naa a22003614i 4500
001 NSK01001068990
003 HR-ZaNSK
005 20211210131534.0
006 m d
007 cr||||||||||||
008 200709s2018 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.11613/BM.2019.010101 
035 |a (HR-ZaNSK)001068990 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 577  |2 2011 
080 1 |a 61  |2 2011 
100 1 |a Ialongo, Cristiano  |4 aut 
245 1 0 |a Confidence interval for quantiles and percentiles  |h [Elektronička građa] /  |c Cristiano Ialongo. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 35 jed. 
504 |a Abstract. 
520 |a Quantiles and percentiles represent useful statistical tools for describing the distribution of results and deriving reference intervals and performance specification in laboratory medicine. They are commonly intended as the sample estimate of a population parameter and therefore they need to be presented with a confidence interval (CI). In this work we discuss three methods to estimate CI on quantiles and percentiles using parametric, nonparametric and resampling (bootstrap) approaches. The result of our numerical simulations is that parametric methods are always more accurate regardless of sample size when the procedure is appropriate for the distribution of results for both extreme (2.5th and 97.5th) and central (25th, 50th and 75th) percentiles and corresponding quantiles. We also show that both nonparametric and bootstrap methods suit well the CI of central percentiles that are used to derive performance specifications through quality indicators of laboratory processes whose underlying distribution is unknown. 
653 0 |a Biostatistika  |a Statističke metode  |a Laboratorijska medicina 
773 0 |t Biochemia medica (Online)  |x 1846-7482  |g 29 (2019), 1 ; str. 5-17  |w nsk.(HR-ZaNSK)000655372 
981 |b Be2018  |b B03/18 
998 |b tino2009 
856 4 0 |u https://doi.org/10.11613/BM.2019.010101 
856 4 0 |u https://www.biochemia-medica.com/en/journal/29/1/10.11613/BM.2019.010101  |y Biochemia medica (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/213852  |y Hrčak