Myopathy detection and classification based on the continuous wavelet transform

Electromyography (EMG) is the study of the electrical activity of the muscle. This technique is often used in the diagnosis of neuromuscular diseases. Myopathy is one of these cases, which affect the muscle and causes many changes in the electromyography signal characteristics. This paper presents a...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001075109/Details
Matična publikacija: Journal of communications software and systems (Online)
15 (2019), 4 ; str. 336-342
Glavni autori: Belkhou, Abdelali (Author), Achmamad, Abdelouahed, Jbari, Atman
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.24138/jcomss.v15i4.796
Hrčak
LEADER 02470naa a22003734i 4500
001 NSK01001075109
003 HR-ZaNSK
005 20201026103516.0
006 m d
007 cr||||||||||||
008 200923s2019 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.24138/jcomss.v15i4.796 
035 |a (HR-ZaNSK)001075109 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
080 1 |a 616  |2 2011 
100 1 |a Belkhou, Abdelali  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Myopathy detection and classification based on the continuous wavelet transform  |h [Elektronička građa] /  |c Abdelali Belkhou, Abdelouahed Achmamad, Atman Jbari. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 31 jed. 
504 |a Summary. 
520 |a Electromyography (EMG) is the study of the electrical activity of the muscle. This technique is often used in the diagnosis of neuromuscular diseases. Myopathy is one of these cases, which affect the muscle and causes many changes in the electromyography signal characteristics. This paper presents a new method for analysis and classification of normal and myopathy EMG signals based on continuous wavelet transform (CWT). Classification algorithms, namely Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Decision Tree (DT), Discriminant Analysis (DA) and Naïve Bayes (NB) were used as classifiers in our study. Five Features were extracted from the continuous wavelet analysis and used as inputs to the mentioned classifiers. Comparison between different classification methods developed in this study was made by evaluation of their results based on multiple scalar performances, mainly accuracy, sensitivity, and specificity. Different combinations of features with different kernel functions were discussed to achieve better performances. Results showed that k-NN classifier achieved the best performances with an accuracy value of 93.68%. 
653 0 |a Elektromiografija  |a Miopatija  |a Neuromuskularne bolesti  |a Dijagnostika 
700 1 |a Achmamad, Abdelouahed  |4 aut  |9 HR-ZaNSK 
700 1 |a Jbari, Atman  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of communications software and systems (Online)  |x 1846-6079  |g 15 (2019), 4 ; str. 336-342  |w nsk.(HR-ZaNSK)000644741 
981 |b Be2019  |b B05/19 
998 |b dalo2010 
856 4 0 |u https://doi.org/10.24138/jcomss.v15i4.796 
856 4 0 |u https://hrcak.srce.hr/229061  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr