On the existence of S-Diophantine quadruples

Let S be a set of primes. We call an m-tuple (a1,… ,am) of distinct, positive integers S-Diophantine, if for all i≠ j the integers si,j:=aiaj+1 have only prime divisors coming from the set S, i.e. if all si,j are S-units. In this paper, we show that no S-Diophantine quadruple (i.e. m=4) exists if S=...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001075553/Details
Matična publikacija: Glasnik matematički (Online)
54 (2019), 2 ; str. 279-319
Glavni autor: Ziegler, Volker (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.54.2.03
Glasnik matematički (Online)
Hrčak
LEADER 01638naa a22003494i 4500
001 NSK01001075553
003 HR-ZaNSK
005 20201026140454.0
006 m d
007 cr||||||||||||
008 200928s2019 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.54.2.03 
035 |a (HR-ZaNSK)001075553 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Ziegler, Volker  |4 aut 
245 1 0 |a On the existence of S-Diophantine quadruples  |h [Elektronička građa] /  |c Volker Ziegler. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 21 jed. 
504 |a Abstract. 
520 |a Let S be a set of primes. We call an m-tuple (a1,… ,am) of distinct, positive integers S-Diophantine, if for all i≠ j the integers si,j:=aiaj+1 have only prime divisors coming from the set S, i.e. if all si,j are S-units. In this paper, we show that no S-Diophantine quadruple (i.e. m=4) exists if S={3,q}. Furthermore we show that for all pairs of primes (p,q) with p <q and p ≡ 3 mod 4 no {p,q}-Diophantine quadruples exist, provided that (p,q) is not a Wieferich prime pair. 
653 0 |a Diofantske jednadžbe  |a Diofantove četvorke 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 54 (2019), 2 ; str. 279-319  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2019  |b B05/19 
998 |b tino2010 
856 4 0 |u https://doi.org/10.3336/gm.54.2.03 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=54203  |y Glasnik matematički (Online) 
856 4 0 |u https://hrcak.srce.hr/229600  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr