A note on the trace theorem for Besov-type spaces of generalized smoothness on d-sets

The main goal of this paper is to give a complete proof of the trace theorem for Besov-type spaces of generalized smoothness associated with complete Bernstein functions satisfying certain scaling conditions on d-sets D⊂ℝn, d≤ n. The proof closely follows the classical approach by Jonsson, Wallin in...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001075556/Details
Matična publikacija: Glasnik matematički (Online)
54 (2019), 1 ; str. 233-254
Glavni autor: Wagner, Vanja (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.54.1.10
Glasnik matematički (Online)
Hrčak
LEADER 01724naa a22003374i 4500
001 NSK01001075556
003 HR-ZaNSK
005 20201026143726.0
006 m d
007 cr||||||||||||
008 200928s2019 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.54.1.10 
035 |a (HR-ZaNSK)001075556 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Wagner, Vanja  |4 aut 
245 1 2 |a A note on the trace theorem for Besov-type spaces of generalized smoothness on d-sets  |h [Elektronička građa] /  |c Vanja Wagner. 
504 |a Bibliografija: 28 jed. 
504 |a Abstract. 
520 |a The main goal of this paper is to give a complete proof of the trace theorem for Besov-type spaces of generalized smoothness associated with complete Bernstein functions satisfying certain scaling conditions on d-sets D⊂ℝn, d≤ n. The proof closely follows the classical approach by Jonsson, Wallin in [18] and the trace theorem for classical Besov spaces. Here, the trace space is defined by means of differences. When d=n, as an application of the trace theorem, we give a condition under which the test functions Cc∞(D) are dense in the trace space on D. 
653 0 |a Bernsteinove funkcije  |a Funkcijski prostori 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 54 (2019), 1 ; str. 233-254  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2019  |b B05/19 
998 |b tino2010 
856 4 0 |u https://doi.org/10.3336/gm.54.1.10 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=54110  |y Glasnik matematički (Online) 
856 4 0 |u https://hrcak.srce.hr/220848  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr