Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images

Optic disc and optic cup are one of the most recognized retinal landmarks, and there are numerous methods for their automatic detection. Segmented optic disc and optic cup are useful in providing the contextual information about the retinal image that can aid in the detection of other retinal featur...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001088560/Details
Matična publikacija: International journal of electrical and computer engineering systems (Online)
11 (2020), 2 ; str. 111-120
Glavni autori: Božić-Štulić, Dunja (Author), Braović, Maja, Stipaničev, Darko
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.32985/ijeces.11.2.6
International journal of electrical and computer engineering systems (Online)
Hrčak
LEADER 02463naa a22003974i 4500
001 NSK01001088560
003 HR-ZaNSK
005 20210211150115.0
006 m d
007 cr||||||||||||
008 210201s2020 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.32985/ijeces.11.2.6 
035 |a (HR-ZaNSK)001088560 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 621.3  |2 2011 
080 1 |a 614  |2 2011 
080 1 |a 61  |2 2011 
100 1 |a Božić-Štulić, Dunja  |4 aut 
245 1 0 |a Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images  |h [Elektronička građa] /  |c Dunja Božić-Štulić, Maja Braović, Darko Stipaničev. 
300 |b Ilustr. 
504 |a Bibliografija: 47 jed. 
504 |a Abstract. 
520 |a Optic disc and optic cup are one of the most recognized retinal landmarks, and there are numerous methods for their automatic detection. Segmented optic disc and optic cup are useful in providing the contextual information about the retinal image that can aid in the detection of other retinal features, but it is also useful in the automatic detection and monitoring of glaucoma. This paper proposes a deep learning based approach for the automatic optic disc and optic cup semantic segmentation, but also the new model for possible glaucoma detection. The proposed method was trained on DRIVE and DIARETDB1 image datasets and evaluated on MESSIDOR dataset, where it achieved the average accuracy of 97.3% of optic disc and 88.1% of optic cup. Detection rate of glaucoma diesis is 96.75% 
653 0 |a Semantička segmentacija  |a Segmentacija slike  |a Duboko učenje  |a Vidni živac  |a Medicinska dijagnostika 
700 1 |a Braović, Maja  |4 aut 
700 1 |a Stipaničev, Darko  |4 aut 
773 0 |t International journal of electrical and computer engineering systems (Online)  |x 1847-7003  |g 11 (2020), 2 ; str. 111-120  |w nsk.(HR-ZaNSK)000739692 
981 |b Be2020  |b B02/20 
998 |b tino2102 
856 4 0 |u https://doi.org/10.32985/ijeces.11.2.6 
856 4 0 |u http://www.etfos.unios.hr/ijeces/papers/deep-learning-based-approach-for-optic-disc-and-optic-cup-semantic-segmentation-for-glaucoma-analysis-in-retinal-fundus-images/  |y International journal of electrical and computer engineering systems (Online) 
856 4 0 |u https://hrcak.srce.hr/242975  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr