A comparison of "neural networks and multiple linear regressions" models to describe the rejection of micropollutants by membranes

A rejection process of organic compounds by nanofiltration and reverse osmosis membranes was modelled using the artificial neural networks. Three feed-forward neural networks based on quantitative structure-activity relationship (QSAR-NN models) characterised by a similar structure (twelve neurons f...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001098251/Details
Matična publikacija: Kemija u industriji (Online)
69 (2020), 3/4 ; str. 111-127
Glavni autori: Ammi, Yamina (Author), Khaouane, Latifa, Hanini, Salah
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.15255/KUI.2019.024
Kemija u industriji (Online)
Hrčak
LEADER 04044naa a22003854i 4500
001 NSK01001098251
003 HR-ZaNSK
005 20210614145709.0
006 m d
007 cr||||||||||||
008 210420s2020 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.15255/KUI.2019.024 
035 |a (HR-ZaNSK)001098251 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b hrv  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 66  |2 2011 
100 1 |a Ammi, Yamina  |4 aut  |9 HR-ZaNSK 
245 1 2 |a A comparison of "neural networks and multiple linear regressions" models to describe the rejection of micropollutants by membranes  |h [Elektronička građa] /  |c Yamina Ammi, Latifa Khaouane, Salah Hanini. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 53 jed. 
504 |a Summary ; Sažetak. 
520 |a A rejection process of organic compounds by nanofiltration and reverse osmosis membranes was modelled using the artificial neural networks. Three feed-forward neural networks based on quantitative structure-activity relationship (QSAR-NN models) characterised by a similar structure (twelve neurons for QSAR-NN1, QSAR-NN2, and QSAR-NN3 in the input layer, one hidden layer and one neuron in the output layer), were constructed with the aim of predicting the rejection of organic compounds. A set of 1394 data points for QSAR-NN1, 980 data points for QSAR-NN2, and 436 data points for QSAR-NN3 were used to construct the neural networks. Good agreements between the predicted and experimental rejections were obtained by QSAR-NN models (the correlation coefficient for the total dataset were 0.9191 for QSAR-NN1, 0.9338 for QSAR-NN2, and 0.9709 for QSAR-NN3). Comparison between the feed-forward neural networks and multiple linear regressions based on quantitative structure-activity relationship “QSAR-MLR” revealed the superiority of the QSAR-NN models (the root mean squared errors for the total dataset for the QSAR-NN models were 10.6517 % for QSAR-NN1, 9.1991 % for QSAR-NN2, and 5.8869 % for QSAR-NN3, and for QSAR-MLR models they were 20.1865 % for QSAR-MLR1, 19.3815 % for QSAR-MLR2, and 16.2062 % for QSAR-MLR3). 
520 |a Postupak odbacivanja organskih spojeva nanofiltracijom i membranama reverzne osmoze modeliran je umjetnim neuronskim mrežama. Konstruirane su tri neuronske mreže zasnovane na kvantitativnom odnosu strukture-aktivnosti (QSAR-NN modeli) karakterizirane sličnom strukturom (dvanaest neurona za QSAR-NN1, QSAR-NN2 i QSAR-NN3 u ulaznom sloju, jedan skriveni sloj i jedan neuron u izlaznom sloju), s ciljem predviđanja odbacivanja organskih spojeva. Za izgradnju neuronskih mreža upotrijebljeni su skupovi od 1394 podatkovnih točaka za QSAR-NN1, 980 podatkovnih točaka za QSAR-NN2 i 436 podatkovnih točaka za QSAR-NN3. Dobre usklađenosti između predviđenih i eksperimentalnih odbacivanja dobivene su modelima QSAR-NN (korelacijski koeficijent za ukupni skup podataka bio je 0,9191 za QSAR-NN1, 0,9338 za QSAR-NN2 i 0,9709 za QSAR-NN3). Usporedba neuronskih mreža i višestrukih linearnih regresija zasnovanih na kvantitativnom odnosu struktura-aktivnost “QSAR-MLR” otkrila je superiornost modela QSAR-NN (korijenske srednje kvadratne pogreške za ukupni skup podataka za modele QSAR-NN bile su 10,6517 % za QSAR-NN1, 9,1991 % za QSAR-NN2, i 5,8869 % za QSAR-NN3, a za modele QSAR-MLR 20,1865 % za QSAR-MLR1, 19,3815 % za QSAR-MLR2, i 16,2062 % za QSAR-MLR3). 
653 0 |a Neuronske mreže  |a Linearna regresija  |a Mikroonečišćenje  |a Nanofiltracija  |a Organski spojevi 
700 1 |a Khaouane, Latifa  |4 aut  |9 HR-ZaNSK 
700 1 |a Hanini, Salah  |4 aut  |9 HR-ZaNSK 
773 0 |t Kemija u industriji (Online)  |x 1334-9090  |g 69 (2020), 3/4 ; str. 111-127  |w nsk.(HR-ZaNSK)000530475 
981 |b Be2020  |b B03/20 
998 |b dalo2106 
856 4 0 |u https://doi.org/10.15255/KUI.2019.024 
856 4 0 |u http://silverstripe.fkit.hr/kui/issue-archive/article/693  |y Kemija u industriji (Online) 
856 4 0 |u https://hrcak.srce.hr/235865  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr