A speech quality classifier based on Tree-CNN algorithm that considers network degradations

Many factors can affect the users’ quality of experience (QoE) in speech communication services. The impairment factors appear due to physical phenomena that occur in the transmission channel of wireless and wired networks. The monitoring of users’ QoE is important for service providers. In this con...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001102357/Details
Matična publikacija: Journal of communications software and systems (Online)
16 (2020), 2 ; str. 180-187
Glavni autori: Vieira, Samuel Terra (Author), Rosa, Renata Lopes, Rodríguez, Demóstenes Zegarra
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.24138/jcomss.v16i2.1032
Journal of communications software and systems (Online)
Hrčak
LEADER 02927naa a22003734i 4500
001 NSK01001102357
003 HR-ZaNSK
005 20210722103929.0
006 m d
007 cr||||||||||||
008 210527s2020 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.24138/jcomss.v16i2.1032 
035 |a (HR-ZaNSK)001102357 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
100 1 |a Vieira, Samuel Terra  |4 aut  |9 HR-ZaNSK 
245 1 2 |a A speech quality classifier based on Tree-CNN algorithm that considers network degradations  |h [Elektronička građa] /  |c Samuel Terra Vieira, Renata Lopes Rosa, Demóstenes Zegarra Rodríguez. 
300 |b Ilustr. 
504 |a Bibliografija: 67 jed. 
504 |a Abstract. 
520 |a Many factors can affect the users’ quality of experience (QoE) in speech communication services. The impairment factors appear due to physical phenomena that occur in the transmission channel of wireless and wired networks. The monitoring of users’ QoE is important for service providers. In this context, a non-intrusive speech quality classifier based on the Tree Convolutional Neural Network (Tree-CNN) is proposed. The Tree-CNN is an adaptive network structure composed of hierarchical CNNs models, and its main advantage is to decrease the training time that is very relevant on speech quality assessment methods. In the training phase of the proposed classifier model, impaired speech signals caused by wired and wireless network degradation are used as input. Also, in the network scenario, different modulation schemes and channel degradation intensities, such as packet loss rate, signal-to-noise ratio, and maximum Doppler shift frequencies are implemented. Experimental results demonstrated that the proposed model achieves significant reduction of training time, reaching 25% of reduction in relation to another implementation based on DRBM. The accuracy reached by the Tree-CNN model is almost 95% for each quality class. Performance assessment results show that the proposed classifier based on the Tree-CNN overcomes both the current standardized algorithm described in ITU-T Rec. P.563 and the speech quality assessment method called ViSQOL. 
653 0 |a Duboko učenje  |a Objektivna metrika  |a Kvaliteta govora  |a Mreže 
700 1 |a Rosa, Renata Lopes  |4 aut  |9 HR-ZaNSK 
700 1 |a Rodríguez, Demóstenes Zegarra  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of communications software and systems (Online)  |x 1846-6079  |g 16 (2020), 2 ; str. 180-187  |w nsk.(HR-ZaNSK)000644741 
981 |b Be2020  |b B03/20 
998 |b tino2107 
856 4 0 |u https://doi.org/10.24138/jcomss.v16i2.1032 
856 4 0 |u https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/1032  |y Journal of communications software and systems (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/240387  |y Hrčak