Improved white blood cells classification based on pre-trained deep learning models

Leukocytes, or white blood cells (WBCs), are microscopic organisms that fight against infectious disease, bacteria, viruses, and others. The manual method to classify and count WBCs is tedious, time-consuming and may has inaccurate results, whereas the automated methods are costly. The objective of...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001102373/Details
Matična publikacija: Journal of communications software and systems (Online)
16 (2020), 1 ; str. 37-45
Glavni autori: Mohamed, Ensaf H. (Author), El Behaidy, Wessam M. H., Khoriba, Ghada, Li, Jie
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.24138/jcomss.v16i1.818
Journal of communications software and systems (Online)
Hrčak
LEADER 02950naa a22003974i 4500
001 NSK01001102373
003 HR-ZaNSK
005 20210722105122.0
006 m d
007 cr||||||||||||
008 210527s2020 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.24138/jcomss.v16i1.818 
035 |a (HR-ZaNSK)001102373 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
080 1 |a 61  |2 2011 
100 1 |a Mohamed, Ensaf H.  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Improved white blood cells classification based on pre-trained deep learning models  |h [Elektronička građa] /  |c Ensaf H. Mohamed, Wessam H. El-Behaidy, Ghada Khoriba, Jie Li. 
300 |b Ilustr., graf. prikazi. 
504 |a Bibliografija: 35 jed. 
504 |a Summary. 
520 |a Leukocytes, or white blood cells (WBCs), are microscopic organisms that fight against infectious disease, bacteria, viruses, and others. The manual method to classify and count WBCs is tedious, time-consuming and may has inaccurate results, whereas the automated methods are costly. The objective of this work is to automatically identify and classify WBCs in a microscopic image into four types with higher accuracy. BCCD is the used dataset in this study, which is a scaled down blood cell detection dataset. BCCD is firstly pre-processed by passing through several processes such as segmentation and augmentation,then it is passed to the proposed model. Our model combines the privilege of deep models in automatically extracting features with the higher classification accuracy of traditional machine learning classifiers.The proposed model consists of two main layers; a shallow tuning pre-trained model and a traditional machine learning classifier on top of it. Here, ten different pretrained models with six different machine learning are used in this study. Moreover, the fully connected network (FCN) of pretrained models is used as a baseline classifier for comparison. The evaluation process shows that the hybrid between MobileNet-224 as feature extractor with logistic regression as classifier has a higher rank-1 accuracy with 97.03%. Besides, the proposed hybrid model outperformed the baseline FCN with 25.78% on average. 
653 0 |a Leukociti  |a Bijele krvne stanice  |a Klasifikacija  |a Automatska identifikacija 
700 1 |a El Behaidy, Wessam M. H.  |4 aut 
700 1 |a Khoriba, Ghada  |4 aut  |9 HR-ZaNSK 
700 1 |a Li, Jie  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of communications software and systems (Online)  |x 1846-6079  |g 16 (2020), 1 ; str. 37-45  |w nsk.(HR-ZaNSK)000644741 
981 |b Be2020  |b B03/20 
998 |b dalo2107 
856 4 0 |u https://doi.org/10.24138/jcomss.v16i1.818 
856 4 0 |u https://jcomss.fesb.unist.hr/index.php/jcomss/article/view/818  |y Journal of communications software and systems (Online) 
856 4 0 |u https://hrcak.srce.hr/236185  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr