The Feuerbach theorem and cyclography in universal geometry

We have another look at the Feuerbach theorem with a view to extending it in an oriented way to finite fields using the purely algebraic approach of rational trigonometry and universal geometry. Our approach starts with the tangent lines to three rational points on the unit circle, and all subsequen...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001128690/Details
Matična publikacija: Kog (Online)
(2020), 24 ; str. 47-58
Glavni autori: Beare, William (Author), Wildberger, Norman John
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31896/k.24.5
Hrčak
LEADER 02236naa a22003614i 4500
001 NSK01001128690
003 HR-ZaNSK
005 20220224102845.0
006 m d
007 cr||||||||||||
008 220221s2020 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.31896/k.24.5 
035 |a (HR-ZaNSK)001128690 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b hrv 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Beare, William  |4 aut  |9 HR-ZaNSK 
245 1 4 |a The Feuerbach theorem and cyclography in universal geometry  |h [Elektronička građa] /  |c William Beare, Norman J. Wildberger. 
300 |b Ilustr. 
504 |a Bibliografija: 10 jed. 
504 |a Abstract ; Sažetak. 
520 |a We have another look at the Feuerbach theorem with a view to extending it in an oriented way to finite fields using the purely algebraic approach of rational trigonometry and universal geometry. Our approach starts with the tangent lines to three rational points on the unit circle, and all subsequent formulas involve the three parameters that define them. Tangency of incircles is treated in the oriented setting via a simplified form of cyclography. Some interesting features of the finite field case are discussed. 
520 |a Dajemo drugačiji pogled na Feuerbachov teorem s ciljem da ga se orijentirano proširi na konačna polja koristeći isključivo algebarski pristup racionalne trigonometrije i univerzalne geometrije. Naš pristup počinje s tangentama u tri racionalne točke na jediničnoj kružnici, i sve naknadne formule uključuju tri parametra koja ih definiraju.Tangencijalnost upisanih kružnica promatra se u orijentiranom okruženju koristeći pojednostavljene forme ciklografije. Promatraju se neka zanimljiva događanja u slučaju konačnih polja. 
653 0 |a Feuerbachov teorem  |a Univerzalna geometrija  |a Ciklografija  |a Konačna polja  |a Upisana kružnica 
700 1 |a Wildberger, Norman John  |4 aut 
773 0 |t Kog (Online)  |x 1846-4068  |g (2020), 24 ; str. 47-58  |w nsk.(HR-ZaNSK)000628952 
981 |b Be2020  |b B04/20 
998 |b tino2202 
856 4 0 |u https://doi.org/10.31896/k.24.5 
856 4 0 |u https://hrcak.srce.hr/248417  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr