Determining residuary resistance per unit weight of displacement with symbolic regression and gradient boosted tree algorithms

Determining the residuary resistance per unit weight of displacement is one of the key factors in the design of vessels. In this paper, the authors utilize two novel methods – Symbolic Regression (SR) and Gradient Boosted Trees (GBT) to achieve a model which can be used to calculate the value of res...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001131314/Details
Matična publikacija: Pomorstvo (Online)
35 (2021), 2 ; str. 275-284
Glavni autori: Baressi Šegota, Sandi (Author), Lorencin, Ivan, Šercer, Mario, Car, Zlatan, inženjer strojarstva
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31217/p.35.2.11
Hrčak
LEADER 02768naa a22003734i 4500
001 NSK01001131314
003 HR-ZaNSK
005 20220503135243.0
006 m d
007 cr||||||||||||
008 220314s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.31217/p.35.2.11 
035 |a (HR-ZaNSK)001131314 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
080 1 |a 629  |2 2011 
100 1 |a Baressi Šegota, Sandi  |4 aut 
245 1 0 |a Determining residuary resistance per unit weight of displacement with symbolic regression and gradient boosted tree algorithms  |h [Elektronička građa] /  |c Sandi Baressi Šegota, Ivan Lorencin, Mario Šercer, Zlatan Car. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 51 jed. 
504 |a Summary. 
520 |a Determining the residuary resistance per unit weight of displacement is one of the key factors in the design of vessels. In this paper, the authors utilize two novel methods – Symbolic Regression (SR) and Gradient Boosted Trees (GBT) to achieve a model which can be used to calculate the value of residuary resistance per unit weight, of displacement from the longitudinal position of the center of buoyancy, prismatic coefficient, length-displacement ratio, beam-draught ratio, length-beam ratio, and Froude number. This data is given as results of 308 experiments provided as a part of a publicly available dataset. The results are evaluated using the coefficient of determination (R2) and Mean Absolute Percentage Error (MAPE). Pre-processing, in the shape of correlation analysis combined with variable elimination and variable scaling, is applied to the dataset. The results show that while both methods achieve regression results, the result of regression of SR is relatively poor in comparison to GBT. Both methods provide slightly poorer, but comparable results to previous research focussing on the use of "black-box" methods, such as neural networks. The elimination of variables does not show a high influence on the modeling performance in the presented case, while variable scaling does achieve better results compared to the models trained with the non-scaled dataset. 
653 0 |a Plovila  |a Projektiranje  |a Simbolička regresija  |a Umjetna inteligencija  |a Hidrodinamičko modeliranje  |a Strojno učenje  |a Algoritmi 
700 1 |a Lorencin, Ivan  |4 aut 
700 1 |a Šercer, Mario  |4 aut 
700 1 |a Car, Zlatan,  |c inženjer strojarstva  |4 aut 
773 0 |t Pomorstvo (Online)  |x 1846-8438  |g 35 (2021), 2 ; str. 275-284  |w nsk.(HR-ZaNSK)000663208 
981 |b Be2021  |b B02/21 
998 |b dalo2205 
856 4 0 |u https://doi.org/10.31217/p.35.2.11 
856 4 0 |u https://hrcak.srce.hr/267183  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr