Hybrid recommendation using temporal data for accuracy improvement in item recommendation

Recommender systems have become a vital entity to the business world in form of software tools to make decisions. It estimates the overloaded information and provides the suitable decisions in any kind of business work through online. Especially in the area of e-commerce, recommender systems provide...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001136760/Details
Matična publikacija: Journal of information and organizational sciences (Online)
45 (2021), 2 ; str. 535-551
Glavni autori: Parasuraman, Desabandhu (Author), Elumalai, Sathiyamoorthy
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.31341/jios.45.2.10
Elektronička verzija članka
Hrčak
LEADER 02376naa a22003494i 4500
001 NSK01001136760
003 HR-ZaNSK
005 20220630153854.0
006 m d
007 cr||||||||||||
008 220503s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.31341/jios.45.2.10 
035 |a (HR-ZaNSK)001136760 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
100 1 |a Parasuraman, Desabandhu  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Hybrid recommendation using temporal data for accuracy improvement in item recommendation  |h [Elektronička građa] /  |c Desabandhu Parasuraman, Sathiyamoorthy Elumalai. 
300 |b Graf. prikazi. 
504 |a Bibliografske bilješke na kraju teksta. 
504 |a Abstract. 
520 |a Recommender systems have become a vital entity to the business world in form of software tools to make decisions. It estimates the overloaded information and provides the suitable decisions in any kind of business work through online. Especially in the area of e-commerce, recommender systems provide suggestions to users on the items that are likely based upon user"s true interest. Collaborative Filtering and Content Based Filtering are the main techniques of recommender systems. Collaborative Filtering is considered to be the best in all domains and always outperforms Content Based filtering. But, both the techniques have some limitations like data sparsity, cold start, gray sheep and scalability issues. To overcome these limitations, Hybrid Recommender Systems are used by combining Collaborative Filtering and Content Based Filtering. This paper proposes such kind of hybrid system by combining Collaborative Filtering and Content Based Filtering using time variance and machine learning algorithm. 
653 0 |a Softverski alati  |a Donošenje odluka  |a Sustavi za davanje preporuka  |a Strojno učenje 
700 1 |a Elumalai, Sathiyamoorthy  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of information and organizational sciences (Online)  |x 1846-9418  |g 45 (2021), 2 ; str. 535-551  |w nsk.(HR-ZaNSK)000672813 
981 |b Be2021  |b B02/21 
998 |b tino2206 
856 4 0 |u https://doi.org/10.31341/jios.45.2.10 
856 4 0 |u https://jios.foi.hr/index.php/jios/article/view/1626  |y Elektronička verzija članka 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/270714  |y Hrčak