Approximation of nilpotent orbits for simple Lie groups

We propose a systematic and topological study of limits limν→0+GR·(νx) of continuous families of adjoint orbits for a non-compact simple real Lie group GR. This limit is always a finite union of nilpotent orbits. We describe explicitly these nilpotent orbits in terms of Richardson orbits in the case...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001145034/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 2 ; str. 287-327
Glavni autori: Fresse, Lucas (Author), Mehdi, Salah
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.2.06
Glasnik matematički (Online)
Hrčak
LEADER 01743naa a22003494i 4500
001 NSK01001145034
003 HR-ZaNSK
005 20221007110934.0
006 m d
007 cr||||||||||||
008 220803s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.2.06 
035 |a (HR-ZaNSK)001145034 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Fresse, Lucas  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Approximation of nilpotent orbits for simple Lie groups  |h [Elektronička građa] /  |c Lucas Fresse, Salah Mehdi. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 25 jed. 
504 |a Abstract. 
520 |a We propose a systematic and topological study of limits limν→0+GR·(νx) of continuous families of adjoint orbits for a non-compact simple real Lie group GR. This limit is always a finite union of nilpotent orbits. We describe explicitly these nilpotent orbits in terms of Richardson orbits in the case of hyperbolic semisimple elements. We also show that one can approximate minimal nilpotent orbits or even nilpotent orbits by elliptic semisimple orbits. The special cases of SLn(R) and SU(p,q) are computed in detail. 
653 0 |a Nilpotentni operator  |a Liejeve algebre  |a Aproksimacija 
700 1 |a Mehdi, Salah  |4 aut  |9 HR-ZaNSK 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 2 ; str. 287-327  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.2.06 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56206  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/267558  |y Hrčak