Amiable and almost amiable fixed sets. Extension of the Brouwer fixed point theorem

This paper introduces shape boundary regions in descriptive proximity forms of CW (Closure-finite Weak) spaces as a source of amiable fixed subsets as well as almost amiable fixed subsets of descriptive proximally continuous (dpc) maps. A dpc map is an extension of an Efremovič-Smirnov proximally co...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001145040/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 1 ; str. 175-194
Glavni autor: Peters, James F. (Author)
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.1.11
Glasnik matematički (Online)
Hrčak
LEADER 02279naa a22003374i 4500
001 NSK01001145040
003 HR-ZaNSK
005 20221017115835.0
006 m d
007 cr||||||||||||
008 220803s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.1.11 
035 |a (HR-ZaNSK)001145040 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Peters, James F.  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Amiable and almost amiable fixed sets. Extension of the Brouwer fixed point theorem  |h [Elektronička građa] /  |c James F. Peters. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 32 jed. 
504 |a Abstract. 
520 |a This paper introduces shape boundary regions in descriptive proximity forms of CW (Closure-finite Weak) spaces as a source of amiable fixed subsets as well as almost amiable fixed subsets of descriptive proximally continuous (dpc) maps. A dpc map is an extension of an Efremovič-Smirnov proximally continuous (pc) map introduced during the early-1950s by V.A. Efremovič and Yu.M. Smirnov. Amiable fixed sets and the Betti numbers of their free Abelian group representations are derived from dpc's relative to the description of the boundary region of the sets. Almost amiable fixed sets are derived from dpc's by relaxing the matching description requirement for the descriptive closeness of the sets. This relaxed form of amiable fixed sets works well for applications in which closeness of fixed sets is approximate rather than exact. A number of examples of amiable fixed sets are given in terms of wide ribbons. A bi-product of this work is a variation of the Jordan curve theorem and a fixed cell complex theorem, which is an extension of the Brouwer fixed point theorem. 
653 0 |a Fiksne točke  |a Browerov teorem  |a CW-kompleks  |a Topološki prostor 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 1 ; str. 175-194  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.1.11 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56111  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/259307  |y Hrčak