A result related to derivations on unital semiprime rings

The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result g...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001145044/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 1 ; str. 95-106
Glavni autori: Kosi-Ulbl, Irena (Author), Širovnik, Nejc, Vukman, Joso
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.1.07
Glasnik matematički (Online)
Hrčak
LEADER 01671naa a22003494i 4500
001 NSK01001145044
003 HR-ZaNSK
005 20221010153242.0
006 m d
007 cr||||||||||||
008 220803s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.1.07 
035 |a (HR-ZaNSK)001145044 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Kosi-Ulbl, Irena  |4 aut 
245 1 2 |a A result related to derivations on unital semiprime rings  |h [Elektronička građa] /  |c Irena Kosi-Ulbl, Nejc Širovnik, Joso Vukman. 
504 |a Bibliografija: 18 jed. 
504 |a Abstract. 
520 |a The purpose of this paper is to prove the following result. Let n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free semiprime unital ring. Suppose there exists an additive mapping D: R→ R satisfying the relation for all x ∈ R. In this case D is a derivation. The history of this result goes back to a classical result of Herstein, which states that any Jordan derivation on a 2-torsion free prime ring is a derivation. 
653 0 |a Prsten (matematika)  |a Derivacije  |a Jordanova derivacija 
700 1 |a Širovnik, Nejc  |4 aut 
700 1 |a Vukman, Joso  |4 aut 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 1 ; str. 95-106  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.1.07 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56107  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/259303  |y Hrčak