Some arithmetic functions of factorials in Lucas sequences

We prove that if {un}n≥ 0 is a nondegenerate Lucas sequence, then there are only finitely many effectively computable positive integers n such that |un|=f(m!), where f is either the sum-of-divisors function, or the sum-of-proper-divisors function, or the Euler phi function. We also give a theorem th...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001145049/Details
Matična publikacija: Glasnik matematički (Online)
56 (2021), 1 ; str. 17-28
Glavni autori: Bravo, Eric F. (Author), Bravo, Jhon J.
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.3336/gm.56.1.02
Glasnik matematički (Online)
Hrčak
LEADER 01765naa a22003374i 4500
001 NSK01001145049
003 HR-ZaNSK
005 20221010131839.0
006 m d
007 cr||||||||||||
008 220803s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.3336/gm.56.1.02 
035 |a (HR-ZaNSK)001145049 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 51  |2 2011 
100 1 |a Bravo, Eric F.  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Some arithmetic functions of factorials in Lucas sequences  |h [Elektronička građa] /  |c Eric F. Bravo, Jhon J. Bravo. 
504 |a Bibliografija: 21 jed. 
504 |a Abstract. 
520 |a We prove that if {un}n≥ 0 is a nondegenerate Lucas sequence, then there are only finitely many effectively computable positive integers n such that |un|=f(m!), where f is either the sum-of-divisors function, or the sum-of-proper-divisors function, or the Euler phi function. We also give a theorem that holds for a more general class of integer sequences and illustrate our results through a few specific examples. This paper is motivated by a previous work of Iannucci and Luca who addressed the above problem with Catalan numbers and the sum-of-proper-divisors function. 
653 0 |a Lucasov niz  |a Aritmetičke funkcije  |a Diofantske jednadžbe 
700 1 |a Bravo, Jhon J.  |4 aut 
773 0 |t Glasnik matematički (Online)  |x 1846-7989  |g 56 (2021), 1 ; str. 17-28  |w nsk.(HR-ZaNSK)000659858 
981 |b Be2021  |b B03/21 
998 |b tino2210 
856 4 0 |u https://doi.org/10.3336/gm.56.1.02 
856 4 0 |u https://web.math.pmf.unizg.hr/glasnik/EasyTracker.php?id=56102  |y Glasnik matematički (Online) 
856 4 1 |y Digitalna.nsk.hr 
856 4 0 |u https://hrcak.srce.hr/259298  |y Hrčak