Green infrastructure mapping in urban areas using Sentinel-1 imagery

High temporal resolution of synthetic aperture radar (SAR) imagery (e.g., Sentinel-1 (S1) imagery) creates new possibilities for monitoring green vegetation in urban areas and generating land-cover classification (LCC) maps. This research evaluates how different pre-processing steps of SAR imagery a...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001145164/Details
Matična publikacija: Croatian journal of forest engineering (Online)
42 (2021), 2 ; str. 337-356
Glavni autori: Gašparović, Mateo (Author), Dobrinić, Dino
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.5552/crojfe.2021.859
Hrčak
LEADER 03030naa a22003374i 4500
001 NSK01001145164
003 HR-ZaNSK
005 20230119134017.0
006 m d
007 cr||||||||||||
008 220803s2021 ci a |o |0|| ||eng
024 7 |2 doi  |a 10.5552/crojfe.2021.859 
035 |a (HR-ZaNSK)001145164 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 528  |2 2011 
100 1 |a Gašparović, Mateo  |4 aut 
245 1 0 |a Green infrastructure mapping in urban areas using Sentinel-1 imagery  |h [Elektronička građa] /  |c Mateo Gašparović, Dino Dobrinić. 
300 |b Ilustr. 
504 |a Bibliografija: str. 350-353. 
504 |a Abstract. 
520 |a High temporal resolution of synthetic aperture radar (SAR) imagery (e.g., Sentinel-1 (S1) imagery) creates new possibilities for monitoring green vegetation in urban areas and generating land-cover classification (LCC) maps. This research evaluates how different pre-processing steps of SAR imagery affect classification accuracy. Machine learning (ML) methods were applied in three different study areas: random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB). Since the presence of the speckle noise in radar imagery is inevitable, different adaptive filters were examined. Using the backscattering values of the S1 imagery, the SVM classifier achieved a mean overall accuracy (OA) of 63.14%, and a Kappa coefficient (Kappa) of 0.50. Using the SVM classifier with a Lee filter with a window size of 5×5 (Lee5) for speckle reduction, mean values of 73.86% and 0.64 for OA and Kappa were achieved, respectively. An additional increase in the LCC was obtained with texture features calculated from a grey-level co-occurrence matrix (GLCM). The highest classification accuracy obtained for the extracted GLCM texture features using the SVM classifier, and Lee5 filter was 78.32% and 0.69 for the mean OA and Kappa values, respectively. This study improved LCC with an evaluation of various radiometric and texture features and confirmed the ability to apply an SVM classifier. For the supervised classification, the SVM method outperformed the RF and XGB methods, although the highest computational time was needed for the SVM, whereas XGB performed the fastest. These results suggest pre-processing steps of the SAR imagery for green infrastructure mapping in urban areas. Future research should address the use of multitemporal SAR data along with the pre-processing steps and ML algorithms described in this research. 
653 0 |a Zelena infrastruktura  |a Urbana područja  |a Mapiranje  |a Strojno učenje  |a SAR satelitske snimke 
700 1 |a Dobrinić, Dino  |4 aut 
773 0 |t Croatian journal of forest engineering (Online)  |x 1848-9672  |g 42 (2021), 2 ; str. 337-356  |w nsk.(HR-ZaNSK)000843366 
981 |b Be2021  |b B03/21 
998 |b tino2301 
856 4 0 |u https://doi.org/10.5552/crojfe.2021.859 
856 4 0 |u https://hrcak.srce.hr/255272  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr