Advances in Clickbait and Fake News Detection Using New Language-independent Strategies

Online publishers rely on different techniques to trap web visitors, clickbait being one such technique. Besides being a bad habit, clickbait is also a strong indicator for fake news spreading. Its presence in online media leads to an overall bad browsing experience for the web consumer. Recently, b...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001163151/Details
Matična publikacija: Journal of communications software and systems (Online)
17 (2021), 3 ; str. 270-280
Glavni autori: Coste, Claudia Ioana (Author), Bufnea, Darius
Vrsta građe: e-članak
Jezik: eng
Online pristup: https://doi.org/10.24138/jcomss-2021-0038
Elektronička verzija članka
Elektronička verzija članka
LEADER 02558naa a22003374i 4500
001 NSK01001163151
003 HR-ZaNSK
005 20230213112643.0
006 m d
007 cr||||||||||||
008 230213s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.24138/jcomss-2021-0038 
035 |a (HR-ZaNSK)001163151 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |2 2011 
100 1 |a Coste, Claudia Ioana  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Advances in Clickbait and Fake News Detection Using New Language-independent Strategies  |h [Elektronička građa]  |c Claudia Ioana Coste, Darius Bufnea. 
300 |b Ilustr. 
504 |a Bibliografija: 
504 |a Summary. 
520 |a Online publishers rely on different techniques to trap web visitors, clickbait being one such technique. Besides being a bad habit, clickbait is also a strong indicator for fake news spreading. Its presence in online media leads to an overall bad browsing experience for the web consumer. Recently, big players on the Internet scene, such as search engines and social networks, have turned their attention towards this negative phenomenon that is increasingly present in our everyday browsing experience. The research community has also joined in this effort, a broad band of detection techniques being developed. These techniques are usually based on intelligent classifiers, for which feature selection is of great importance. The work presented in this paper brings our own contributions to the field of clickbait detection. We present a new language-independent strategy for clickbait detection that takes into consideration only features that are general enough to be independent of any particular language. The methods presented in this paper could be applied to web content written in different languages. In addition, we present the results of a complex experiment that we performed to evaluate our proposed method and we compare our results with the most relevant results previously obtained in the field. 
700 1 |a Bufnea, Darius  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of communications software and systems (Online)  |x 1846-6079  |g 17 (2021), 3 ; str. 270-280  |w nsk.(HR-ZaNSK)000644741 
981 |b Be2021 
856 4 0 |u https://doi.org/10.24138/jcomss-2021-0038 
856 4 0 |u https://jcoms.fesb.unist.hr/10.24138/jcomss-2021-0038/  |y Elektronička verzija članka 
856 4 0 |u https://jcoms.fesb.unist.hr/pdfs/v17n3_2021-0038_coste.pdf  |y Elektronička verzija članka 
856 4 1 |y Digitalna.nsk.hr