Efficient Behavior Prediction Based on User Events

In 2020 we have witnessed the dawn of machine learning enabled user experience. Now we can predict how users will use an application. Research progressed beyond recommendations, and we are ready to predict user events. Whenever a human interacts with a system, user events are dispatched. They can be...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001163168/Details
Matična publikacija: Journal of communications software and systems (Online)
17 (2021), 2 ; str. 134-142
Glavni autori: Szabo, Peter (Author), Genge, Bela
Vrsta građe: e-članak
Jezik: eng
Online pristup: https://doi.org/10.24138/jcomss-2020-0011
Elektronička verzija članka
Elektronička verzija članka
LEADER 02231naa a22003374i 4500
001 NSK01001163168
003 HR-ZaNSK
005 20230213112915.0
006 m d
007 cr||||||||||||
008 230213s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.24138/jcomss-2020-0011 
035 |a (HR-ZaNSK)001163168 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |2 2011 
100 1 |a Szabo, Peter  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Efficient Behavior Prediction Based on User Events  |h [Elektronička građa]  |c Peter Szabo, Bela Genge. 
300 |b Ilustr. 
504 |a Bibliografija: 
504 |a Summary. 
520 |a In 2020 we have witnessed the dawn of machine learning enabled user experience. Now we can predict how users will use an application. Research progressed beyond recommendations, and we are ready to predict user events. Whenever a human interacts with a system, user events are dispatched. They can be as simple as a mouse click on a menu item or more complex, such as buying a product from an eCommerce site. Collaborative filtering (CF) has proven to be an excellent approach to predict events. Because each user can generate many events, this inevitably leads to a vast number of events in a dataset. Unfortunately, the operation time of CF increases exponentially with the increase of data-points. This paper presents a generalized approach to reduce the dataset"s size without compromising prediction accuracy. Our solution transformed a dataset containing over 20 million user events (20,692,840 rows) into a sparse matrix in about 7 minutes (434.08 s). We have used this matrix to train a neural network to accurately predict user events.  
700 1 |a Genge, Bela  |4 aut  |9 HR-ZaNSK 
773 0 |t Journal of communications software and systems (Online)  |x 1846-6079  |g 17 (2021), 2 ; str. 134-142  |w nsk.(HR-ZaNSK)000644741 
981 |b Be2021 
856 4 0 |u https://doi.org/10.24138/jcomss-2020-0011 
856 4 0 |u https://jcoms.fesb.unist.hr/10.24138/jcomss-2020-0011/  |y Elektronička verzija članka 
856 4 0 |u https://jcoms.fesb.unist.hr/pdfs/v17n2_2020-0011_szabo.pdf  |y Elektronička verzija članka 
856 4 1 |y Digitalna.nsk.hr