Deterministic and statistical methods in machine learning
Permalink: | http://skupni.nsk.hr/Record/fer.KOHA-OAI-FER:34765/Details |
---|---|
Ostali autori: | Sheffield Machine Learning Workshop (-) |
Ostali autori: | Winkler, Joab (-), Niranjan, Mahesan, Lawrence, Neil (Neil D.) |
Vrsta građe: | Knjiga |
Jezik: | eng |
Impresum: |
Berlin ; New York :
Springer,
c2005.
|
Nakladnička cjelina: |
Lecture notes in computer science ;
3635. Lecture notes in computer science. Lecture notes in artificial intelligence. |
Predmet: | |
Online pristup: |
Restricted to SpringerLink subscribers Publisher description |
LEADER | 04223cam a2200625 a 4500 | ||
---|---|---|---|
005 | 20140414114124.0 | ||
008 | 050831s2005 gw a b 101 0 eng d | ||
010 | |a 2005933155 | ||
016 | 7 | |a 976400081 |2 GyFmDB | |
020 | |a 3540290737 (pbk.) | ||
020 | |a 9783540290735 | ||
035 | |a (OCoLC)ocm62143889 | ||
040 | |a OHX |c OHX |d CUS |d BAKER |d C$Q |d IQU |d IXA |d HR-ZaFER |b hrv |e ppiak | ||
042 | |a lccopycat | ||
072 | 7 | |a QA |2 lcco | |
111 | 2 | |a Sheffield Machine Learning Workshop |d (2004 : |c Sheffield, England) | |
245 | 1 | 0 | |a Deterministic and statistical methods in machine learning : |b first international workshop, Sheffield, UK, September 7-10, 2004 : revised lectures / |c Joab Winkler, Mahesan Niranjan, Neil Lawrence (eds.). |
260 | |a Berlin ; |a New York : |b Springer, |c c2005. | ||
300 | |a viii, 339 p. : |b ill. ; |c 24 cm. | ||
490 | 1 | |a Lecture notes in computer science, |x 0302-9743 ; |v 3635. |a Lecture notes in artificial intelligence | |
500 | |a "Sheffield Machine Learning Workshop"--Pref. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Object Recognition via Local Patch Labelling --- Christopher M. Bishop, Ilkay Ulusoy | |
505 | 0 | |a Multi Channel Sequence Processing --- Samy Bengio, Hervé Bourlard | |
505 | 0 | |a Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis --- Gavin C. Cawley, Nicola L. C. Talbot, Gareth J. Janacek, Michael W. Peck | |
505 | 0 | |a Extensions of the Informative Vector Machine --- Neil D. Lawrence, John C. Platt, Michael I. Jordan | |
505 | 0 | |a Efficient Communication by Breathing --- Tom H. Shorrock, David J. C. MacKay, Chris J. Ball | |
505 | 0 | |a Guiding Local Regression Using Visualisation --- Dharmesh M. Maniyar, Ian T. Nabney | |
505 | 0 | |a Transformations of Gaussian Process Priors --- Roderick Murray-Smith, Barak A. Pearlmutter | |
505 | 0 | |a Kernel Based Learning Methods: Regularization Networks and RBF Networks --- Petra Kudová, Roman Neruda | |
505 | 0 | |a Redundant Bit Vectors for Quickly Searching High-Dimensional Regions --- Jonathan Goldstein, John C. Plat, Christopher J. C. Burges | |
505 | 0 | |a Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis --- Stephen Roberts, Rizwan Choudrey | |
505 | 0 | |a Ensemble Algorithms for Feature Selection --- Jeremy D. Rogers, Steve R. Gunn | |
505 | 0 | |a Can Gaussian Process Regression Be Made Robust Against Model Mismatch? --- Peter Sollich | |
505 | 0 | |a Understanding Gaussian Process Regression Using the Equivalent Kernel --- Peter Sollich, Christopher K. I. Williams | |
505 | 0 | |a Integrating Binding Site Predictions Using Non-linear Classification Methods --- Yi Sun, Mark Robinson, Rod Adams, Paul Kaye, Alistair Rust, Neil Davey | |
505 | 0 | |a Support Vector Machine to Synthesise Kernels --- Hongying Meng, John Shawe-Taylor, Sandor Szedmak, Jason D. R. Farquhar | |
505 | 0 | |a Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data --- Bram Vanschoenwinkel, Bernard Manderick | |
505 | 0 | |a Variational Bayes Estimation of Mixing Coefficients --- Bo Wang, D. M. Titterington | |
505 | 0 | |a A Comparison of Condition Numbers for the Full Rank Least Squares Problem --- Joab R. Winkler | |
505 | 0 | |a SVM Based Learning System for Information Extraction --- Yaoyong Li, Kalina Bontcheva, Hamish Cunningham | |
530 | |a Also issued online. | ||
650 | 0 | |a Machine learning |v Congresses. | |
650 | 0 | |a Machine learning |x Statistical methods |v Congresses. | |
700 | 1 | |a Winkler, Joab. | |
700 | 1 | |a Niranjan, Mahesan. | |
700 | 1 | |a Lawrence, Neil |q (Neil D.) | |
830 | 0 | |a Lecture notes in computer science ; |v 3635. | |
830 | 0 | |a Lecture notes in computer science. |p Lecture notes in artificial intelligence. | |
856 | 4 | 1 | |u http://springerlink.metapress.com/openurl.asp?genre=issue&issn=0302-9743&volume=3635 |z Restricted to SpringerLink subscribers |
856 | 4 | 2 | |3 Publisher description |u http://www.loc.gov/catdir/enhancements/fy0663/2005933155-d.html |
906 | |a 0 |b ibc |c copycat |d 2 |e epcn |f 20 |g y-gencatlg | ||
942 | |2 udc |c K | ||
955 | |a jp43 2006-08-30 z-processor |c jp43 2006-08-30 to subj | ||
999 | |c 34765 |d 34765 |