Deterministic and statistical methods in machine learning

Permalink: http://skupni.nsk.hr/Record/fer.KOHA-OAI-FER:34765/TOC
Ostali autori: Sheffield Machine Learning Workshop (-)
Ostali autori: Winkler, Joab (-), Niranjan, Mahesan, Lawrence, Neil (Neil D.)
Vrsta građe: Knjiga
Jezik: eng
Impresum: Berlin ; New York : Springer, c2005.
Nakladnička cjelina: Lecture notes in computer science ; 3635.
Lecture notes in computer science. Lecture notes in artificial intelligence.
Predmet:
Online pristup: Restricted to SpringerLink subscribers
Publisher description
Sadržaj:
  • Object Recognition via Local Patch Labelling
  • - Christopher M. Bishop, Ilkay Ulusoy
  • Multi Channel Sequence Processing
  • - Samy Bengio, Hervé Bourlard
  • Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis
  • - Gavin C. Cawley, Nicola L. C. Talbot, Gareth J. Janacek, Michael W. Peck
  • Extensions of the Informative Vector Machine
  • - Neil D. Lawrence, John C. Platt, Michael I. Jordan
  • Efficient Communication by Breathing
  • - Tom H. Shorrock, David J. C. MacKay, Chris J. Ball
  • Guiding Local Regression Using Visualisation
  • - Dharmesh M. Maniyar, Ian T. Nabney
  • Transformations of Gaussian Process Priors
  • - Roderick Murray-Smith, Barak A. Pearlmutter
  • Kernel Based Learning Methods: Regularization Networks and RBF Networks
  • - Petra Kudová, Roman Neruda
  • Redundant Bit Vectors for Quickly Searching High-Dimensional Regions
  • - Jonathan Goldstein, John C. Plat, Christopher J. C. Burges
  • Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis
  • - Stephen Roberts, Rizwan Choudrey
  • Ensemble Algorithms for Feature Selection
  • - Jeremy D. Rogers, Steve R. Gunn
  • Can Gaussian Process Regression Be Made Robust Against Model Mismatch?
  • - Peter Sollich
  • Understanding Gaussian Process Regression Using the Equivalent Kernel
  • - Peter Sollich, Christopher K. I. Williams
  • Integrating Binding Site Predictions Using Non-linear Classification Methods
  • - Yi Sun, Mark Robinson, Rod Adams, Paul Kaye, Alistair Rust, Neil Davey
  • Support Vector Machine to Synthesise Kernels
  • - Hongying Meng, John Shawe-Taylor, Sandor Szedmak, Jason D. R. Farquhar
  • Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data
  • - Bram Vanschoenwinkel, Bernard Manderick
  • Variational Bayes Estimation of Mixing Coefficients
  • - Bo Wang, D. M. Titterington
  • A Comparison of Condition Numbers for the Full Rank Least Squares Problem
  • - Joab R. Winkler
  • SVM Based Learning System for Information Extraction
  • - Yaoyong Li, Kalina Bontcheva, Hamish Cunningham