|
|
|
|
LEADER |
04748cam a2200445 i 4500 |
001 |
NSK01000172893 |
003 |
HR-ZaNSK |
005 |
20160419100436.0 |
008 |
960924s1995 ci a m 000 0 hrv |
035 |
|
|
|9 (HR-ZaNSK)173095
|
035 |
|
|
|9 (HR-ZaNSK)960924040
|
035 |
|
|
|a (HR-ZaNSK)000172893
|
040 |
|
|
|a HR-ZaNSK
|b hrv
|c HR-ZaNSK
|e ppiak
|
041 |
0 |
|
|a hrv
|
044 |
|
|
|a ci
|c hr
|
080 |
|
|
|a 535.14
|
080 |
|
|
|a 514.74
|
100 |
1 |
|
|a Črnugelj, Josip
|
245 |
1 |
0 |
|a Poopćena koherentna stanja algebri SU(1,1) i SUq(1,1) i njihova primjena :
|b doktorska disertacija /
|c Josip Črnugelj.
|
260 |
|
|
|a Zagreb :
|b J. Črnugelj,
|c 1995
|e ([s. l :
|f s. n.])
|
300 |
|
|
|a 95 listova :
|b graf. prikazi ;
|c 30 cm.
|
500 |
|
|
|a Doktor prirodnih znanosti - fizika
|
500 |
|
|
|a mentor: Mladen Martinis; Komisija za ocjenu: Miroslav Furić, Mladen Martinis, Stjepan Meljanac; Komisija za obranu: Stjepan Meljanac, Mladen Martinis, Miroslav Furić; datum obrane: 15.06.1995; datum promocije: 01.12.1995.
|
502 |
|
|
|a Sveučilište u Zagrebu, Institut "Ruđer Bošković", Zagreb, 1995
|
504 |
|
|
|a Bibliografija: str. 91-95
|
504 |
|
|
|a Summary
|
520 |
|
|
|a Sažetak: Proučavaju se poopćena koherentna stanja algebri SU(1,1) i SUq(1,1). Nakon razmatranja osnovnih svojstava ovih grupa daje se pregled različitih definicija standardnih koherentnih stanja i veze među njima. Skup koherentnih stanja postepeno se proširuje, te se razmatraju stisnuta koherentna stanja, q-deformirana koherentna stanja i poopćena koherentna stanja. Veličine čije vrijednosti se određuju u pojedinim koherentnim stanjima su: raspodjela čestica, srednji broj čestica, korelaciona funkcija drugog reda i stisnutost stanja. Izvode se opće formule kojima se određuju te veličine u q-deformiranim koherentnim stanjima. Iste veličine određuju se u stisnutim koherentnim stanjima i u poopćenim koherentnim stanjima.
|
520 |
|
|
|a Opće relacije demonstriraju se na nekim konkretnim primjerima. Operatori pomoću kojih definiramo pojedina koherentna stanja povezuju se s linearnim i nelinearnim trnsformacijama na skupu bozonskih operatora (a,a ,1). Razmatraju se koherentna stanja u slučaju tri moda, konstruira se q-deformirano koherentno stanje operatora naboja. Posebno se razmatraju koherentna stanja u slučaju n modova. Uvodi se vektorski operator pomoću kojeg se definiraju stisnuta koherentna stanja i daje se njegov faktorizirani oblik. Deformirana koherentna stanja korištena su za proučavanje deformiranog Jaynes-Cummings-ovog modela. Detaljno se razmatra vremensko odvijanje sistema, naročito vremenska ovisnost srednjeg broja čestica, inverzija popunjenja i svojstvo stisnutosti stanja. Na osnovu numeričkih računa rezultati su prikazani grafički.
|
520 |
|
|
|a Summary: We examine generalized coherent states of the SU(1,1) and SUq(1,1) algebras. After considering some basic properties of these algebras, we give a brief review of various definitions of the standard coherent states and their mutual connections. We extend a set of coherent states step by step and thus consider squeezed coherent states, q-deformed coherent states and generalized coherent states. The quantities which we determine using these states are the following: distribution of particles, mean particle number, correlation function of second order and squeezing of states. We derive some general relations to determine these quantities in q-deformed coherent states. We also determine these quantites by using squeezed coherent states and generalized coherent states.
|
520 |
|
|
|a We demonstrate applications of the general relations to some special examples. We show that the operators used to define coherent states are connected with linear and nonlinear transformations in the set of the bosonic operators (a, a , 1). We consider coherent states in the three mode and construct a coherent state of the charge operator. Specially, we investigate coherent states in the case og n-mode. We introduce the vector operator to construct queezed oherent states and give the factorized form of this operator. We use deformed coherent states to investigate a deformed Jaynes-Cummings model.
|
520 |
|
|
|a We study the time evolution of the system in detail, especially the time dependence of the mean particle number, the population inversion and the squeezing properties of the model. Results of numerical calculations are given graphically.
|
650 |
|
7 |
|a Algebra
|x Koherentna stanja
|
700 |
1 |
|
|a Martinis, Mladen
|4 cns
|4 oth
|
700 |
1 |
|
|a Furić, Miroslav
|4 oth
|
700 |
1 |
|
|a Meljanac, Stjepan
|4 oth
|
981 |
|
|
|p CRO
|r HRB1995
|
998 |
|
|
|n DCD
|c lba, 199703
|
852 |
4 |
|
|j DCD-ZG-165/96
|
876 |
|
|
|e DCD
|a 165/1996
|
886 |
0 |
|
|2 unimarc
|b 04539iam0 2200373 450
|