Model for Predicting the Machinability of Continuously Cast and Subsequently Rolled Steel Using the Artificial Neural Network

The paper presents a model for predicting the machinability of steels using the method of artificial neural networks. The model includes all indicators from the entire steel production process that best predict the machinability of continuously cast steel. Data for model development were obtained fr...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001163074/Details
Matična publikacija: Tehnički glasnik (Online)
15 (2021), 3 ; str. 381-386
Glavni autori: Kovačič, Miha (Author), Salihu, Shpetim, Župerl, Uroš
Vrsta građe: e-članak
Jezik: eng
Online pristup: https://doi.org/10.31803/tg-20210619190926
Elektronička verzija članka
LEADER 02094naa a22003374i 4500
001 NSK01001163074
003 HR-ZaNSK
005 20230213104421.0
006 m d
007 cr||||||||||||
008 230213s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.31803/tg-20210619190926 
035 |a (HR-ZaNSK)001163074 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng 
042 |a croatica 
044 |a ci  |c hr 
080 1 |2 2011 
100 1 |a Kovačič, Miha  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Model for Predicting the Machinability of Continuously Cast and Subsequently Rolled Steel Using the Artificial Neural Network  |h [Elektronička građa]  |c Miha Kovačič, Shpetim Salihu, Uroš Župerl. 
300 |b Ilustr. 
504 |a Bibliografija: 
504 |a Summary. 
520 |a The paper presents a model for predicting the machinability of steels using the method of artificial neural networks. The model includes all indicators from the entire steel production process that best predict the machinability of continuously cast steel. Data for model development were obtained from two years of serial production of 26 steel grades from 255 batches and include seven parameters from secondary metallurgy, four parameters from the casting process, and the content of ten chemical elements. The machinability was determined based on ISO 3685, which defines the machinability of a batch as the cutting speed with a cutting tool life of 15 minutes. An artificial neural network is used to predict this cutting speed. Based on the modelling results, the steel production process was optimised. Over a 5-month period, an additional 39 batches of 20MnV6 steel were produced to verify the developed model. 
700 1 |a Salihu, Shpetim  |4 aut  |9 HR-ZaNSK 
700 1 |a Župerl, Uroš  |4 aut  |9 HR-ZaNSK 
773 0 |t Tehnički glasnik (Online)  |x 1848-5588  |g 15 (2021), 3 ; str. 381-386  |w nsk.(HR-ZaNSK)000810940 
981 |b Be2021 
856 4 0 |u https://doi.org/10.31803/tg-20210619190926 
856 4 0 |u https://hrcak.srce.hr/262153  |y Elektronička verzija članka 
856 4 1 |y Digitalna.nsk.hr