A proposed model for predicting employee turnover of information technology specialists using data mining techniques

This article proposes a data mining framework to predict the significant explanations of employee turn-over problems. Using Support vector machine, decision tree, deep learning, random forest, and other classification algorithms, the authors propose features prediction framework to determine the inf...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001131288/Details
Matična publikacija: International journal of electrical and computer engineering systems (Online)
12 (2021), 2 ; str. 113-121
Glavni autori: Ghazi, Ahmed Hosny (Author), Elsayed, Samir Ismail, Khedr, Ayman Elsayed
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.32985/ijeces.12.2.6
International journal of electrical and computer engineering systems (Online)
Hrčak
LEADER 02435naa a22003614i 4500
001 NSK01001131288
003 HR-ZaNSK
005 20220425132910.0
006 m d
007 cr||||||||||||
008 220314s2021 ci d |o |0|| ||eng
024 7 |2 doi  |a 10.32985/ijeces.12.2.6 
035 |a (HR-ZaNSK)001131288 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 004  |2 2011 
100 1 |a Ghazi, Ahmed Hosny  |4 aut  |9 HR-ZaNSK 
245 1 2 |a A proposed model for predicting employee turnover of information technology specialists using data mining techniques  |h [Elektronička građa] /  |c Ahmed Hosny Ghazi, Samir Ismail Elsayed, Ayman Elsayed Khedr. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 19 jed. 
504 |a Abstract. 
520 |a This article proposes a data mining framework to predict the significant explanations of employee turn-over problems. Using Support vector machine, decision tree, deep learning, random forest, and other classification algorithms, the authors propose features prediction framework to determine the influencing factors of employee turn-over problem. The proposed framework categorizes a set of historical behavior such as years at company, over time, performance rating, years since last promotion, and total working years. The proposed framework also classifies demographics features such as Age, Monthly Income, and Distance from Home, Marital Status, Education, and Gender. It also uses attitudinal employee characteristics to determine the reasons for employee turnover in the information technology sector. It has been found that the monthly rate, overtime, and employee age are the most significant factors which cause employee turnover. 
653 0 |a Rudarenje podataka  |a Fluktuacija zaposlenika  |a Predviđanje  |a Klasifikacija 
700 1 |a Elsayed, Samir Ismail  |4 aut  |9 HR-ZaNSK 
700 1 |a Khedr, Ayman Elsayed  |4 aut  |9 HR-ZaNSK 
773 0 |t International journal of electrical and computer engineering systems (Online)  |x 1847-7003  |g 12 (2021), 2 ; str. 113-121  |w nsk.(HR-ZaNSK)000739692 
981 |b Be2021  |b B01/21 
998 |b tino2204 
856 4 0 |u https://doi.org/10.32985/ijeces.12.2.6 
856 4 0 |u https://ijeces.ferit.hr/index.php/ijeces/article/view/58  |y International journal of electrical and computer engineering systems (Online) 
856 4 0 |u https://hrcak.srce.hr/261484  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr