Optimisation and prediction of the coagulant dose for the elimination of organic micropollutants based on turbidity

In this study, four different mathematical models were considered to predict the coagulant dose in view of turbidity removal: response surface methodology (RSM), artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). The results showed that...

Full description

Permalink: http://skupni.nsk.hr/Record/nsk.NSK01001144929/Details
Matična publikacija: Kemija u industriji (Online)
70 (2021), 11/12 ; str. 675-691
Glavni autori: Tahraoui, Hichem (Author), Belhadj, Abd-Elmouneïm, Moula, Nassim, Bouranene, Saliha, Amrane, Abdeltif
Vrsta građe: e-članak
Jezik: eng
Predmet:
Online pristup: https://doi.org/10.15255/KUI.2021.001
Kemija u industriji (Online)
Hrčak
LEADER 03904naa a22004214i 4500
001 NSK01001144929
003 HR-ZaNSK
005 20221219114536.0
006 m d
007 cr||||||||||||
008 220803s2021 ci |o |0|| ||eng
024 7 |2 doi  |a 10.15255/KUI.2021.001 
035 |a (HR-ZaNSK)001144929 
040 |a HR-ZaNSK  |b hrv  |c HR-ZaNSK  |e ppiak 
041 0 |a eng  |b hrv 
042 |a croatica 
044 |a ci  |c hr 
080 1 |a 60  |2 2011 
080 1 |a 004  |2 2011 
100 1 |a Tahraoui, Hichem  |4 aut  |9 HR-ZaNSK 
245 1 0 |a Optimisation and prediction of the coagulant dose for the elimination of organic micropollutants based on turbidity  |h [Elektronička građa] /  |c Hichem Tahraoui, Abd-Elmouneïm Belhadj, Nassim Moula, Saliha Bouranene, Abdeltif Amrane. 
300 |b Graf. prikazi. 
504 |a Bibliografija: 62 jed. 
504 |a Summary ; Sažetak. 
520 |a In this study, four different mathematical models were considered to predict the coagulant dose in view of turbidity removal: response surface methodology (RSM), artificial neural networks (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). The results showed that all models accurately fitted the experimental data, even if the ANN model was slightly above the other models. The SVM model led to almost similar results as the ANN model; the only difference was in the validation phase, since the correlation coefficient was very high and the statistical indicators were very low for the ANN model compared to the SVM model. However, from an economic point of view, the SVM model was more appropriate than the ANN model, since its number of parameters was 22, i.e., almost half the number of parameters of the ANN model (43 parameters), while the results were almost similar in all the data phase. To reduce the economic costs further, the RSM model can also be used, which remained very useful due to its high coefficients related to the number of parameters – only 13. In addition, the statistical indicators of the RSM model remained acceptable. 
520 |a Četiri različita matematička modela primijenjena su za predviđanje doze koagulanta u svrhu uklanjanja zamućenja: model odzivne površine (RSM), umjetna neuronska mreža (ANN), model potpornih vektora (SVM) i model prilagodljivog sustava neizrazitog zaključivanja zasnovanog na neuronskoj mreži (ANFIS). Rezultati su pokazali da svi modeli točno opisuju eksperimentalne podatke, iako je ANN model bio nešto bolji. SVM model imao je sličnu podudarnost kao i ANN model no razlika je bila u validaciji modela gdje je ANN model ostvario vrlo visoke vrijednosti koeficijenta korelacije te niske vrijednosti statističkih pokazatelja. No s ekonomskog gledišta, SVM model je prikladniji od ANN modela, budući da je njegov broj parametara 22 što je gotovo upola manje od broja parametara ANN modela (43 parametra), dok su rezultati bili slični. Dodatno smanjenje ekonomskih troškova može se ostvariti primjenom RSM modela koji je ostvario visoke vrijednosti koeficijenata s obzirom na svega 13 parametara. Uz to, RSM model imao je prihvatljive statističke pokazatelje. 
653 0 |a ANFIS  |a Umjetne neuronske mreže  |a Koagulacija  |a Fizikalno-kemijska analiza  |a Metoda potpornih vektora  |a Metodologija odzivnih površina 
700 1 |a Belhadj, Abd-Elmouneïm  |4 aut  |9 HR-ZaNSK 
700 1 |a Moula, Nassim  |4 aut  |9 HR-ZaNSK 
700 1 |a Bouranene, Saliha  |4 aut  |9 HR-ZaNSK 
700 1 |a Amrane, Abdeltif  |4 aut 
773 0 |t Kemija u industriji (Online)  |x 1334-9090  |g 70 (2021), 11/12 ; str. 675-691  |w nsk.(HR-ZaNSK)000530475 
981 |b Be2021  |b B03/21 
998 |b tino2212 
856 4 0 |u https://doi.org/10.15255/KUI.2021.001 
856 4 0 |u http://silverstripe.fkit.hr/kui/issue-archive/article/823  |y Kemija u industriji (Online) 
856 4 0 |u https://hrcak.srce.hr/264639  |y Hrčak 
856 4 1 |y Digitalna.nsk.hr